Cargando…
The [3+2] Annulation of CF(3)-Ketimines by Re Catalysis: Access to CF(3)-Containing Amino Heterocycles and Polyamides
Transition metal catalyzed [3 + 2] annulation of imines with double bonds via directed C-H activation offers a direct access to amino cyclic motifs. However, owing to weak coordination and steric hindrance, trifluoromethylated ketimines have been an unaddressed challenge for TM-catalyzed annulations...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7644752/ https://www.ncbi.nlm.nih.gov/pubmed/33196028 http://dx.doi.org/10.1016/j.isci.2020.101705 |
Sumario: | Transition metal catalyzed [3 + 2] annulation of imines with double bonds via directed C-H activation offers a direct access to amino cyclic motifs. However, owing to weak coordination and steric hindrance, trifluoromethylated ketimines have been an unaddressed challenge for TM-catalyzed annulations. Here, a rhenium-catalyzed [3 + 2] annulation of trifluoromethylated ketimines with isocyanates via C(sp(2))-H activation has been disclosed. This approach provides an efficient platform for rapid access to a privileged library of CF(3)-containing iminoisoindolinones and polyamides by utilizing challenging CF(3)-ketimines as the annulation component. The capability of gram scale synthesis, the post-functionalization of the cyclization adduct, the derivation of complex natural molecules and the facile synthesis of polyamides highlight a diversity of synthetic potential of the current methodology. |
---|