Cargando…

A zebrafish functional genomics model to investigate the role of human A20 variants in vivo

Germline loss-of-function variation in TNFAIP3, encoding A20, has been implicated in a wide variety of autoinflammatory and autoimmune conditions, with acquired somatic missense mutations linked to cancer progression. Furthermore, human sequence data reveals that the A20 locus contains ~ 400 non-syn...

Descripción completa

Detalles Bibliográficos
Autores principales: Cultrone, Daniele, Zammit, Nathan W., Self, Eleanor, Postert, Benno, Han, Jeremy Z. R., Bailey, Jacqueline, Warren, Joanna, Croucher, David R., Kikuchi, Kazu, Bogdanovic, Ozren, Chtanova, Tatyana, Hesselson, Daniel, Grey, Shane T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7644770/
https://www.ncbi.nlm.nih.gov/pubmed/33154446
http://dx.doi.org/10.1038/s41598-020-75917-6
_version_ 1783606522952024064
author Cultrone, Daniele
Zammit, Nathan W.
Self, Eleanor
Postert, Benno
Han, Jeremy Z. R.
Bailey, Jacqueline
Warren, Joanna
Croucher, David R.
Kikuchi, Kazu
Bogdanovic, Ozren
Chtanova, Tatyana
Hesselson, Daniel
Grey, Shane T.
author_facet Cultrone, Daniele
Zammit, Nathan W.
Self, Eleanor
Postert, Benno
Han, Jeremy Z. R.
Bailey, Jacqueline
Warren, Joanna
Croucher, David R.
Kikuchi, Kazu
Bogdanovic, Ozren
Chtanova, Tatyana
Hesselson, Daniel
Grey, Shane T.
author_sort Cultrone, Daniele
collection PubMed
description Germline loss-of-function variation in TNFAIP3, encoding A20, has been implicated in a wide variety of autoinflammatory and autoimmune conditions, with acquired somatic missense mutations linked to cancer progression. Furthermore, human sequence data reveals that the A20 locus contains ~ 400 non-synonymous coding variants, which are largely uncharacterised. The growing number of A20 coding variants with unknown function, but potential clinical impact, poses a challenge to traditional mouse-based approaches. Here we report the development of a novel functional genomics approach that utilizes a new A20-deficient zebrafish (Danio rerio) model to investigate the impact of TNFAIP3 genetic variants in vivo. A20-deficient zebrafish are hyper-responsive to microbial immune activation and exhibit spontaneous early lethality. Ectopic addition of human A20 rescued A20-null zebrafish from lethality, while missense mutations at two conserved A20 residues, S381A and C243Y, reversed this protective effect. Ser381 represents a phosphorylation site important for enhancing A20 activity that is abrogated by its mutation to alanine, or by a causal C243Y mutation that triggers human autoimmune disease. These data reveal an evolutionarily conserved role for TNFAIP3 in limiting inflammation in the vertebrate linage and show how this function is controlled by phosphorylation. They also demonstrate how a zebrafish functional genomics pipeline can be utilized to investigate the in vivo significance of medically relevant human TNFAIP3 gene variants.
format Online
Article
Text
id pubmed-7644770
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-76447702020-11-06 A zebrafish functional genomics model to investigate the role of human A20 variants in vivo Cultrone, Daniele Zammit, Nathan W. Self, Eleanor Postert, Benno Han, Jeremy Z. R. Bailey, Jacqueline Warren, Joanna Croucher, David R. Kikuchi, Kazu Bogdanovic, Ozren Chtanova, Tatyana Hesselson, Daniel Grey, Shane T. Sci Rep Article Germline loss-of-function variation in TNFAIP3, encoding A20, has been implicated in a wide variety of autoinflammatory and autoimmune conditions, with acquired somatic missense mutations linked to cancer progression. Furthermore, human sequence data reveals that the A20 locus contains ~ 400 non-synonymous coding variants, which are largely uncharacterised. The growing number of A20 coding variants with unknown function, but potential clinical impact, poses a challenge to traditional mouse-based approaches. Here we report the development of a novel functional genomics approach that utilizes a new A20-deficient zebrafish (Danio rerio) model to investigate the impact of TNFAIP3 genetic variants in vivo. A20-deficient zebrafish are hyper-responsive to microbial immune activation and exhibit spontaneous early lethality. Ectopic addition of human A20 rescued A20-null zebrafish from lethality, while missense mutations at two conserved A20 residues, S381A and C243Y, reversed this protective effect. Ser381 represents a phosphorylation site important for enhancing A20 activity that is abrogated by its mutation to alanine, or by a causal C243Y mutation that triggers human autoimmune disease. These data reveal an evolutionarily conserved role for TNFAIP3 in limiting inflammation in the vertebrate linage and show how this function is controlled by phosphorylation. They also demonstrate how a zebrafish functional genomics pipeline can be utilized to investigate the in vivo significance of medically relevant human TNFAIP3 gene variants. Nature Publishing Group UK 2020-11-05 /pmc/articles/PMC7644770/ /pubmed/33154446 http://dx.doi.org/10.1038/s41598-020-75917-6 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Cultrone, Daniele
Zammit, Nathan W.
Self, Eleanor
Postert, Benno
Han, Jeremy Z. R.
Bailey, Jacqueline
Warren, Joanna
Croucher, David R.
Kikuchi, Kazu
Bogdanovic, Ozren
Chtanova, Tatyana
Hesselson, Daniel
Grey, Shane T.
A zebrafish functional genomics model to investigate the role of human A20 variants in vivo
title A zebrafish functional genomics model to investigate the role of human A20 variants in vivo
title_full A zebrafish functional genomics model to investigate the role of human A20 variants in vivo
title_fullStr A zebrafish functional genomics model to investigate the role of human A20 variants in vivo
title_full_unstemmed A zebrafish functional genomics model to investigate the role of human A20 variants in vivo
title_short A zebrafish functional genomics model to investigate the role of human A20 variants in vivo
title_sort zebrafish functional genomics model to investigate the role of human a20 variants in vivo
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7644770/
https://www.ncbi.nlm.nih.gov/pubmed/33154446
http://dx.doi.org/10.1038/s41598-020-75917-6
work_keys_str_mv AT cultronedaniele azebrafishfunctionalgenomicsmodeltoinvestigatetheroleofhumana20variantsinvivo
AT zammitnathanw azebrafishfunctionalgenomicsmodeltoinvestigatetheroleofhumana20variantsinvivo
AT selfeleanor azebrafishfunctionalgenomicsmodeltoinvestigatetheroleofhumana20variantsinvivo
AT postertbenno azebrafishfunctionalgenomicsmodeltoinvestigatetheroleofhumana20variantsinvivo
AT hanjeremyzr azebrafishfunctionalgenomicsmodeltoinvestigatetheroleofhumana20variantsinvivo
AT baileyjacqueline azebrafishfunctionalgenomicsmodeltoinvestigatetheroleofhumana20variantsinvivo
AT warrenjoanna azebrafishfunctionalgenomicsmodeltoinvestigatetheroleofhumana20variantsinvivo
AT croucherdavidr azebrafishfunctionalgenomicsmodeltoinvestigatetheroleofhumana20variantsinvivo
AT kikuchikazu azebrafishfunctionalgenomicsmodeltoinvestigatetheroleofhumana20variantsinvivo
AT bogdanovicozren azebrafishfunctionalgenomicsmodeltoinvestigatetheroleofhumana20variantsinvivo
AT chtanovatatyana azebrafishfunctionalgenomicsmodeltoinvestigatetheroleofhumana20variantsinvivo
AT hesselsondaniel azebrafishfunctionalgenomicsmodeltoinvestigatetheroleofhumana20variantsinvivo
AT greyshanet azebrafishfunctionalgenomicsmodeltoinvestigatetheroleofhumana20variantsinvivo
AT cultronedaniele zebrafishfunctionalgenomicsmodeltoinvestigatetheroleofhumana20variantsinvivo
AT zammitnathanw zebrafishfunctionalgenomicsmodeltoinvestigatetheroleofhumana20variantsinvivo
AT selfeleanor zebrafishfunctionalgenomicsmodeltoinvestigatetheroleofhumana20variantsinvivo
AT postertbenno zebrafishfunctionalgenomicsmodeltoinvestigatetheroleofhumana20variantsinvivo
AT hanjeremyzr zebrafishfunctionalgenomicsmodeltoinvestigatetheroleofhumana20variantsinvivo
AT baileyjacqueline zebrafishfunctionalgenomicsmodeltoinvestigatetheroleofhumana20variantsinvivo
AT warrenjoanna zebrafishfunctionalgenomicsmodeltoinvestigatetheroleofhumana20variantsinvivo
AT croucherdavidr zebrafishfunctionalgenomicsmodeltoinvestigatetheroleofhumana20variantsinvivo
AT kikuchikazu zebrafishfunctionalgenomicsmodeltoinvestigatetheroleofhumana20variantsinvivo
AT bogdanovicozren zebrafishfunctionalgenomicsmodeltoinvestigatetheroleofhumana20variantsinvivo
AT chtanovatatyana zebrafishfunctionalgenomicsmodeltoinvestigatetheroleofhumana20variantsinvivo
AT hesselsondaniel zebrafishfunctionalgenomicsmodeltoinvestigatetheroleofhumana20variantsinvivo
AT greyshanet zebrafishfunctionalgenomicsmodeltoinvestigatetheroleofhumana20variantsinvivo