Cargando…
Development and Validation of the Predictive Model for Esophageal Squamous Cell Carcinoma Differentiation Degree
The diagnosis of the degree of differentiation of tumor cells can help physicians to make timely detection and take appropriate treatment for the patient's condition. In this study, the original dataset is clustered into two independent types by the Kohonen clustering algorithm. One type is use...
Autores principales: | Wang, Yanfeng, Yang, Yuli, Sun, Junwei, Wang, Lidong, Song, Xin, Zhao, Xueke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7645151/ https://www.ncbi.nlm.nih.gov/pubmed/33193745 http://dx.doi.org/10.3389/fgene.2020.595638 |
Ejemplares similares
-
Survival Risk Prediction of Esophageal Squamous Cell Carcinoma Based on BES-LSSVM
por: Wang, Yanfeng, et al.
Publicado: (2022) -
Survival Prediction Model for Patients with Esophageal Squamous Cell Carcinoma Based on the Parameter-Optimized Deep Belief Network Using the Improved Archimedes Optimization Algorithm
por: Wang, Yanfeng, et al.
Publicado: (2022) -
Multistrategy Improved Sparrow Search Algorithm Optimized Deep Neural Network for Esophageal Cancer
por: Wang, Yanfeng, et al.
Publicado: (2022) -
Development and Validation of a Ferroptosis-Related Gene Signature and Nomogram for Predicting the Prognosis of Esophageal Squamous Cell Carcinoma
por: Ye, Jiecheng, et al.
Publicado: (2021) -
The High Expression of p53 Is Predictive of Poor Survival Rather TP53 Mutation in Esophageal Squamous Cell Carcinoma
por: Jin, Yan, et al.
Publicado: (2023)