Cargando…
microRNA-221 Inhibits Latent TGF-β1 Activation through Targeting Thrombospondin-1 to Attenuate Kidney Failure-Induced Cardiac Fibrosis
Kidney failure (KF) is associated with cardiac fibrosis and significantly increased mortality in heart failure. Thrombospondin-1 (TSP1), a key regulator of latent transforming growth factor-β1 (L-TGF-β1) activation, is a predicted target of miR-221. We hypothesized miR-221 attenuates severe KF-assoc...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7645417/ https://www.ncbi.nlm.nih.gov/pubmed/33230477 http://dx.doi.org/10.1016/j.omtn.2020.09.041 |
_version_ | 1783606652671361024 |
---|---|
author | Zhou, Yue Ng, Denise Yu En Richards, Arthur Mark Wang, Peipei |
author_facet | Zhou, Yue Ng, Denise Yu En Richards, Arthur Mark Wang, Peipei |
author_sort | Zhou, Yue |
collection | PubMed |
description | Kidney failure (KF) is associated with cardiac fibrosis and significantly increased mortality in heart failure. Thrombospondin-1 (TSP1), a key regulator of latent transforming growth factor-β1 (L-TGF-β1) activation, is a predicted target of miR-221. We hypothesized miR-221 attenuates severe KF-associated cardiac fibrosis via targeting of Thbs1 with subsequent inhibition of L-TGF-β1 activation. Rat cardiac fibroblasts (cFB) were isolated and transfected with microRNA-221 (miR-221) mimics or mimic control (miR-221 and MC) with or without exposure to L-TGF-β1. We demonstrate miR-221 downregulates Thbs1 via direct 3′ untranslated region (3′ UTR) targeting with consequent inhibition of L-TGF-β1 activation in cFB as proven by the significant reduction of myofibroblast activation, collagen secretion, TGF-β1 signaling, TSP1 secretion, and TGF-β1 bioactivity measured by Pai1 promoter reporter. The 5/6 nephrectomy (Nx) model of cardiac fibrosis was used to test the in vivo therapeutic efficacy of miR-221 (i.v. 1 mg/kg ×3). miR-221 significantly inhibited Nx-induced upregulation of TSP1 and p-SMAD3 in the heart at day-7 and reduced cardiac fibrosis (picro-sirius), improved cardiac function (±dP/dt), and improved 8-week survival rate (60% versus 36%; p = 0.038). miR-221 mimic treatment improved survival and reduced cardiac fibrosis in a model of severe KF. miR-221 is a therapeutic target to address cardiac fibrosis originating from renal disease and other causes. |
format | Online Article Text |
id | pubmed-7645417 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Society of Gene & Cell Therapy |
record_format | MEDLINE/PubMed |
spelling | pubmed-76454172020-11-17 microRNA-221 Inhibits Latent TGF-β1 Activation through Targeting Thrombospondin-1 to Attenuate Kidney Failure-Induced Cardiac Fibrosis Zhou, Yue Ng, Denise Yu En Richards, Arthur Mark Wang, Peipei Mol Ther Nucleic Acids Original Article Kidney failure (KF) is associated with cardiac fibrosis and significantly increased mortality in heart failure. Thrombospondin-1 (TSP1), a key regulator of latent transforming growth factor-β1 (L-TGF-β1) activation, is a predicted target of miR-221. We hypothesized miR-221 attenuates severe KF-associated cardiac fibrosis via targeting of Thbs1 with subsequent inhibition of L-TGF-β1 activation. Rat cardiac fibroblasts (cFB) were isolated and transfected with microRNA-221 (miR-221) mimics or mimic control (miR-221 and MC) with or without exposure to L-TGF-β1. We demonstrate miR-221 downregulates Thbs1 via direct 3′ untranslated region (3′ UTR) targeting with consequent inhibition of L-TGF-β1 activation in cFB as proven by the significant reduction of myofibroblast activation, collagen secretion, TGF-β1 signaling, TSP1 secretion, and TGF-β1 bioactivity measured by Pai1 promoter reporter. The 5/6 nephrectomy (Nx) model of cardiac fibrosis was used to test the in vivo therapeutic efficacy of miR-221 (i.v. 1 mg/kg ×3). miR-221 significantly inhibited Nx-induced upregulation of TSP1 and p-SMAD3 in the heart at day-7 and reduced cardiac fibrosis (picro-sirius), improved cardiac function (±dP/dt), and improved 8-week survival rate (60% versus 36%; p = 0.038). miR-221 mimic treatment improved survival and reduced cardiac fibrosis in a model of severe KF. miR-221 is a therapeutic target to address cardiac fibrosis originating from renal disease and other causes. American Society of Gene & Cell Therapy 2020-10-04 /pmc/articles/PMC7645417/ /pubmed/33230477 http://dx.doi.org/10.1016/j.omtn.2020.09.041 Text en © 2020 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Article Zhou, Yue Ng, Denise Yu En Richards, Arthur Mark Wang, Peipei microRNA-221 Inhibits Latent TGF-β1 Activation through Targeting Thrombospondin-1 to Attenuate Kidney Failure-Induced Cardiac Fibrosis |
title | microRNA-221 Inhibits Latent TGF-β1 Activation through Targeting Thrombospondin-1 to Attenuate Kidney Failure-Induced Cardiac Fibrosis |
title_full | microRNA-221 Inhibits Latent TGF-β1 Activation through Targeting Thrombospondin-1 to Attenuate Kidney Failure-Induced Cardiac Fibrosis |
title_fullStr | microRNA-221 Inhibits Latent TGF-β1 Activation through Targeting Thrombospondin-1 to Attenuate Kidney Failure-Induced Cardiac Fibrosis |
title_full_unstemmed | microRNA-221 Inhibits Latent TGF-β1 Activation through Targeting Thrombospondin-1 to Attenuate Kidney Failure-Induced Cardiac Fibrosis |
title_short | microRNA-221 Inhibits Latent TGF-β1 Activation through Targeting Thrombospondin-1 to Attenuate Kidney Failure-Induced Cardiac Fibrosis |
title_sort | microrna-221 inhibits latent tgf-β1 activation through targeting thrombospondin-1 to attenuate kidney failure-induced cardiac fibrosis |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7645417/ https://www.ncbi.nlm.nih.gov/pubmed/33230477 http://dx.doi.org/10.1016/j.omtn.2020.09.041 |
work_keys_str_mv | AT zhouyue microrna221inhibitslatenttgfb1activationthroughtargetingthrombospondin1toattenuatekidneyfailureinducedcardiacfibrosis AT ngdeniseyuen microrna221inhibitslatenttgfb1activationthroughtargetingthrombospondin1toattenuatekidneyfailureinducedcardiacfibrosis AT richardsarthurmark microrna221inhibitslatenttgfb1activationthroughtargetingthrombospondin1toattenuatekidneyfailureinducedcardiacfibrosis AT wangpeipei microrna221inhibitslatenttgfb1activationthroughtargetingthrombospondin1toattenuatekidneyfailureinducedcardiacfibrosis |