Cargando…

Additive effects of simulated microgravity and ionizing radiation in cell death, induction of ROS and expression of RAC2 in human bronchial epithelial cells

Radiation and microgravity are undoubtedly two major factors in space environment that pose a health threat to astronauts. However, the mechanistic study of their interactive biological effects is lacking. In this study, human lung bronchial epithelial Beas-2B cells were used to study the regulation...

Descripción completa

Detalles Bibliográficos
Autores principales: Tan, Shaobo, Pei, Weiwei, Huang, Hao, Zhou, Guangming, Hu, Wentao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7645497/
https://www.ncbi.nlm.nih.gov/pubmed/33298974
http://dx.doi.org/10.1038/s41526-020-00123-7
Descripción
Sumario:Radiation and microgravity are undoubtedly two major factors in space environment that pose a health threat to astronauts. However, the mechanistic study of their interactive biological effects is lacking. In this study, human lung bronchial epithelial Beas-2B cells were used to study the regulation of radiobiological effects by simulated microgravity (using a three-dimensional clinostat). It was found that simulated microgravity together with radiation induced drop of survival fraction, proliferation inhibition, apoptosis, and DNA double-strand break formation of Beas-2B cells additively. They also additively induced Ras-related C3 botulinum toxin substrate 2 (RAC2) upregulation, leading to increased NADPH oxidase activity and increased intracellular reactive oxygen species (ROS) yield. The findings indicated that simulated microgravity and ionizing radiation presented an additive effect on cell death of human bronchial epithelial cells, which was mediated by RAC2 to some extent. The study provides a new perspective for the better understanding of the compound biological effects of the space environmental factors.