Cargando…
Analysis of transcriptional modules during human fibroblast ageing
For systematic identification of transcription signatures of human cell aging, we carried out Weighted Gene Co-expression Network Analysis (WGCNA) with the RNA-sequencing data generated with young to old human dermal fibroblasts. By relating the modules to the donor's traits, we uncovered the n...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7645754/ https://www.ncbi.nlm.nih.gov/pubmed/33154459 http://dx.doi.org/10.1038/s41598-020-76117-y |
Sumario: | For systematic identification of transcription signatures of human cell aging, we carried out Weighted Gene Co-expression Network Analysis (WGCNA) with the RNA-sequencing data generated with young to old human dermal fibroblasts. By relating the modules to the donor's traits, we uncovered the natural aging- and premature aging disease-associated modules. The STRING functional association networks built with the core module memberships provided a systematic overview of genome-wide transcriptional changes upon aging. We validated the selected candidates via quantitative reverse transcription PCR (RT-qPCR) assay with young and aged human fibroblasts, and uncovered several genes involved in ECM, cell, and nuclear mechanics as a potential aging biomarker. Collectively, our study not only provides a snapshot of functional changes during human fibroblast aging but also presents potential aging markers that are relevant to cell mechanics. |
---|