Cargando…
NEMPD: a network embedding-based method for predicting miRNA-disease associations by preserving behavior and attribute information
BACKGROUND: As an important non-coding RNA, microRNA (miRNA) plays a significant role in a series of life processes and is closely associated with a variety of Human diseases. Hence, identification of potential miRNA-disease associations can make great contributions to the research and treatment of...
Autores principales: | Ji, Bo-Ya, You, Zhu-Hong, Chen, Zhan-Heng, Wong, Leon, Yi, Hai-Cheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7646193/ https://www.ncbi.nlm.nih.gov/pubmed/32912137 http://dx.doi.org/10.1186/s12859-020-03716-x |
Ejemplares similares
-
Predicting miRNA-disease association from heterogeneous information network with GraRep embedding model
por: Ji, Bo-Ya, et al.
Publicado: (2020) -
DANE-MDA: Predicting microRNA-disease associations via deep attributed network embedding
por: Ji, Bo-Ya, et al.
Publicado: (2021) -
Effective attributed network embedding with information behavior extraction
por: Hu, Ganglin, et al.
Publicado: (2022) -
Robust Attribute and Structure Preserving Graph Embedding
por: Hettige, Bhagya, et al.
Publicado: (2020) -
Predicting miRNA-Disease Association Based on Modularity Preserving Heterogeneous Network Embedding
por: Peng, Wei, et al.
Publicado: (2021)