Cargando…

Acoustic Waves in Axonal Membrane and Caveolins are the New Targets for Pain Treatment with High Frequency Ultrasound

Reciprocal interaction between electrical and mechanical waves observed in axonal membrane during its excitation leads to a paradigm shift in pain research making the uncoupling of electro-mechanical signals an interesting target in pain treatment. This uncoupling can be realized either through dire...

Descripción completa

Detalles Bibliográficos
Autor principal: Kruglikov, Ilja
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7646452/
https://www.ncbi.nlm.nih.gov/pubmed/33173328
http://dx.doi.org/10.2147/JPR.S281468
Descripción
Sumario:Reciprocal interaction between electrical and mechanical waves observed in axonal membrane during its excitation leads to a paradigm shift in pain research making the uncoupling of electro-mechanical signals an interesting target in pain treatment. This uncoupling can be realized either through direct disturbance of the mechanical surface waves in axonal membrane or through shifting of the thermodynamic state of this membrane far from its phase transition point. Both effects can be effectively realized through application of the very high frequency ultrasound waves. Additional target for application of ultrasound in pain treatment is the caveolin-1, which is abundantly present in Schwann cells as well as in the non-axonal tissues. Both targets demonstrate frequency-dependent reactions, thus making a very high frequency ultrasound a promising treatment modality in pain treatment.