Cargando…
Comparison of methods for the detection of outliers and associated biomarkers in mislabeled omics data
BACKGROUND: Previous studies have reported that labeling errors are not uncommon in omics data. Potential outliers may severely undermine the correct classification of patients and the identification of reliable biomarkers for a particular disease. Three methods have been proposed to address the pro...
Autores principales: | Sun, Hongwei, Cui, Yuehua, Wang, Hui, Liu, Haixia, Wang, Tong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7646480/ https://www.ncbi.nlm.nih.gov/pubmed/32795265 http://dx.doi.org/10.1186/s12859-020-03653-9 |
Ejemplares similares
-
An Efficient Algorithm for the Detection of Outliers in Mislabeled Omics Data
por: Sun, Hongwei, et al.
Publicado: (2021) -
reGenotyper: Detecting mislabeled samples in genetic data
por: Zych, Konrad, et al.
Publicado: (2017) -
Right data for right patient—a precisionFDA NCI–CPTAC Multi-omics Mislabeling Challenge
por: Boja, Emily, et al.
Publicado: (2018) -
Analytical method for detecting outlier evaluators
por: Wu, Yujie, et al.
Publicado: (2023) -
ROSIE: RObust Sparse ensemble for outlIEr detection and gene
selection in cancer omics data
por: Jensch, Antje, et al.
Publicado: (2022)