Cargando…

Upregulating miR-637 aggravates endoplasmic reticulum stress-induced apoptosis in gastric cancer cells by suppressing Calreticulin

Gastric cancer is a leading cause of cancer death worldwide. Endoplasmic reticulum (ER) stress-induced apoptosis has been confirmed to be important in the treatment of gastric cancer. MiR-637 has recently been found to exert inhibitory effects on gastric cancer, and this study aimed to investigate w...

Descripción completa

Detalles Bibliográficos
Autores principales: Kong, Qingli, Zhang, Zhisheng, Liang, Zhipeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7646546/
https://www.ncbi.nlm.nih.gov/pubmed/33209200
http://dx.doi.org/10.1080/19768354.2020.1816579
Descripción
Sumario:Gastric cancer is a leading cause of cancer death worldwide. Endoplasmic reticulum (ER) stress-induced apoptosis has been confirmed to be important in the treatment of gastric cancer. MiR-637 has recently been found to exert inhibitory effects on gastric cancer, and this study aimed to investigate whether miR-637 could regulate apoptosis through ER stress. The results showed that tunicamycin (TM) induced downregulation of miR-637 in gastric cancer cells (AGS) and increase of apoptosis and ER stress. Overexpression of miR-637 promoted TM-induced apoptosis and expression of ER stress associated proteins (GRP78 and CHOP), but inhibited expression of Calreticulin. MiR-637 could bind with the 3ʹ-UTR of CALR, and negatively regulated the expression of CALR. The co-transfection of miR-637 and CALR in AGS cells show that, CALR overexpression could reverse the pro-apoptosis effects of miR-637 in TM-treated cells. In conclusion, the present study suggests that miR-637 participates in ER stress-induced apoptosis in gastric cancer cells by suppressing CALR expression. miR-637 or CALR may be a future potential target for gastric cancer treatment.