Cargando…
Gold nanoparticle-mediated delivery of paclitaxel and nucleic acids for cancer therapy
Paclitaxel is a potent antineoplastic agent, but poor solubility and resistance have limited its use. Gold nanoparticles (AuNPs) are widely studied as drug carriers because they can be engineered to prevent drug insolubility, carry nucleic acid payloads for gene therapy, target specific tumor cell l...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7646735/ https://www.ncbi.nlm.nih.gov/pubmed/33173972 http://dx.doi.org/10.3892/mmr.2020.11580 |
Sumario: | Paclitaxel is a potent antineoplastic agent, but poor solubility and resistance have limited its use. Gold nanoparticles (AuNPs) are widely studied as drug carriers because they can be engineered to prevent drug insolubility, carry nucleic acid payloads for gene therapy, target specific tumor cell lines, modulate drug release and amplify photothermal therapy. Consequently, the conjugation of paclitaxel with AuNPs to improve antiproliferative and pro-apoptotic potency may enable improved clinical outcomes. There are currently a number of different AuNPs under development, including simple drug or nucleic acid carriers and targeted AuNPs that are designed to deliver therapeutic payloads to specific cells. The current study reviewed previous research on AuNPs and the development of AuNP-based paclitaxel delivery. |
---|