Cargando…

Evidence for functional and regulatory cross-talk between Wnt/β-catenin signalling and Mre11–Rad50–Nbs1 complex in the repair of cisplatin-induced DNA cross-links

The canonical Wnt/β-catenin signalling pathway plays a crucial role in a variety of functions including cell proliferation and differentiation, tumorigenic processes and radioresistance in cancer cells. The Mre11–Rad50–Nbs1 (MRN) complex has a pivotal role in sensing and repairing DNA damage. Howeve...

Descripción completa

Detalles Bibliográficos
Autores principales: Pasadi, Sanjeev, Muniyappa, Kalappa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7646826/
https://www.ncbi.nlm.nih.gov/pubmed/33216839
http://dx.doi.org/10.18632/oncotarget.27777
_version_ 1783606855524679680
author Pasadi, Sanjeev
Muniyappa, Kalappa
author_facet Pasadi, Sanjeev
Muniyappa, Kalappa
author_sort Pasadi, Sanjeev
collection PubMed
description The canonical Wnt/β-catenin signalling pathway plays a crucial role in a variety of functions including cell proliferation and differentiation, tumorigenic processes and radioresistance in cancer cells. The Mre11–Rad50–Nbs1 (MRN) complex has a pivotal role in sensing and repairing DNA damage. However, it remains unclear whether a connection exists between Wnt/β-catenin signalling and the MRN complex in the repair of cisplatin-induced DNA interstrand cross-links (ICLs). Here, we report that (1) cisplatin exposure results in a significant increase in the levels of MRN complex subunits in human tumour cells; (2) cisplatin treatment stimulates Wnt/β-catenin signalling through increased β-catenin expression; (3) the functional perturbation of Wnt/β-catenin signalling results in aberrant cell cycle dynamics and the activation of DNA damage response and apoptosis; (4) a treatment with CHIR99021, a potent and selective GSK3β inhibitor, augments cisplatin-induced cell death in cancer cells. On the other hand, inactivation of the Wnt/β-catenin signalling with FH535 promotes cell survival. Consistently, the staining pattern of γH2AX-foci is significantly reduced in the cells exposed simultaneously to cisplatin and FH535; and (5) inhibition of Wnt/β-catenin signalling impedes cisplatin-induced phosphorylation of Chk1, abrogates the G2/M phase arrest and impairs recombination-based DNA repair. Our data further show that Wnt signalling positively regulates the expression of β-catenin, Mre11 and FANCD2 at early time points, but declining thereafter due to negative feedback regulation. These results support a model wherein Wnt/β-catenin signalling and MRN complex crosstalk during DNA ICL repair, thereby playing an important role in the maintenance of genome stability.
format Online
Article
Text
id pubmed-7646826
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Impact Journals LLC
record_format MEDLINE/PubMed
spelling pubmed-76468262020-11-17 Evidence for functional and regulatory cross-talk between Wnt/β-catenin signalling and Mre11–Rad50–Nbs1 complex in the repair of cisplatin-induced DNA cross-links Pasadi, Sanjeev Muniyappa, Kalappa Oncotarget Research Paper The canonical Wnt/β-catenin signalling pathway plays a crucial role in a variety of functions including cell proliferation and differentiation, tumorigenic processes and radioresistance in cancer cells. The Mre11–Rad50–Nbs1 (MRN) complex has a pivotal role in sensing and repairing DNA damage. However, it remains unclear whether a connection exists between Wnt/β-catenin signalling and the MRN complex in the repair of cisplatin-induced DNA interstrand cross-links (ICLs). Here, we report that (1) cisplatin exposure results in a significant increase in the levels of MRN complex subunits in human tumour cells; (2) cisplatin treatment stimulates Wnt/β-catenin signalling through increased β-catenin expression; (3) the functional perturbation of Wnt/β-catenin signalling results in aberrant cell cycle dynamics and the activation of DNA damage response and apoptosis; (4) a treatment with CHIR99021, a potent and selective GSK3β inhibitor, augments cisplatin-induced cell death in cancer cells. On the other hand, inactivation of the Wnt/β-catenin signalling with FH535 promotes cell survival. Consistently, the staining pattern of γH2AX-foci is significantly reduced in the cells exposed simultaneously to cisplatin and FH535; and (5) inhibition of Wnt/β-catenin signalling impedes cisplatin-induced phosphorylation of Chk1, abrogates the G2/M phase arrest and impairs recombination-based DNA repair. Our data further show that Wnt signalling positively regulates the expression of β-catenin, Mre11 and FANCD2 at early time points, but declining thereafter due to negative feedback regulation. These results support a model wherein Wnt/β-catenin signalling and MRN complex crosstalk during DNA ICL repair, thereby playing an important role in the maintenance of genome stability. Impact Journals LLC 2020-11-03 /pmc/articles/PMC7646826/ /pubmed/33216839 http://dx.doi.org/10.18632/oncotarget.27777 Text en Copyright: © 2020 Pasadi et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/3.0/) (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Paper
Pasadi, Sanjeev
Muniyappa, Kalappa
Evidence for functional and regulatory cross-talk between Wnt/β-catenin signalling and Mre11–Rad50–Nbs1 complex in the repair of cisplatin-induced DNA cross-links
title Evidence for functional and regulatory cross-talk between Wnt/β-catenin signalling and Mre11–Rad50–Nbs1 complex in the repair of cisplatin-induced DNA cross-links
title_full Evidence for functional and regulatory cross-talk between Wnt/β-catenin signalling and Mre11–Rad50–Nbs1 complex in the repair of cisplatin-induced DNA cross-links
title_fullStr Evidence for functional and regulatory cross-talk between Wnt/β-catenin signalling and Mre11–Rad50–Nbs1 complex in the repair of cisplatin-induced DNA cross-links
title_full_unstemmed Evidence for functional and regulatory cross-talk between Wnt/β-catenin signalling and Mre11–Rad50–Nbs1 complex in the repair of cisplatin-induced DNA cross-links
title_short Evidence for functional and regulatory cross-talk between Wnt/β-catenin signalling and Mre11–Rad50–Nbs1 complex in the repair of cisplatin-induced DNA cross-links
title_sort evidence for functional and regulatory cross-talk between wnt/β-catenin signalling and mre11–rad50–nbs1 complex in the repair of cisplatin-induced dna cross-links
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7646826/
https://www.ncbi.nlm.nih.gov/pubmed/33216839
http://dx.doi.org/10.18632/oncotarget.27777
work_keys_str_mv AT pasadisanjeev evidenceforfunctionalandregulatorycrosstalkbetweenwntbcateninsignallingandmre11rad50nbs1complexintherepairofcisplatininduceddnacrosslinks
AT muniyappakalappa evidenceforfunctionalandregulatorycrosstalkbetweenwntbcateninsignallingandmre11rad50nbs1complexintherepairofcisplatininduceddnacrosslinks