Cargando…

Histo-molecular differentiation of renal cancer subtypes by mass spectrometry imaging and rapid proteome profiling of formalin-fixed paraffin-embedded tumor tissue sections

Pathology differentiation of renal cancer types is challenging due to tissue similarities or overlapping histological features of various tumor (sub) types. As assessment is often manually conducted outcomes can be prone to human error and therefore require high-level expertise and experience. Mass...

Descripción completa

Detalles Bibliográficos
Autores principales: Möginger, Uwe, Marcussen, Niels, Jensen, Ole N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7646834/
https://www.ncbi.nlm.nih.gov/pubmed/33216824
http://dx.doi.org/10.18632/oncotarget.27787
_version_ 1783606857397436416
author Möginger, Uwe
Marcussen, Niels
Jensen, Ole N.
author_facet Möginger, Uwe
Marcussen, Niels
Jensen, Ole N.
author_sort Möginger, Uwe
collection PubMed
description Pathology differentiation of renal cancer types is challenging due to tissue similarities or overlapping histological features of various tumor (sub) types. As assessment is often manually conducted outcomes can be prone to human error and therefore require high-level expertise and experience. Mass spectrometry can provide detailed histo-molecular information on tissue and is becoming increasingly popular in clinical settings. Spatially resolving technologies such as mass spectrometry imaging and quantitative microproteomics profiling in combination with machine learning approaches provide promising tools for automated tumor classification of clinical tissue sections. In this proof of concept study we used MALDI-MS imaging (MSI) and rapid LC-MS/MS-based microproteomics technologies (15 min/sample) to analyze formalin-fixed paraffin embedded (FFPE) tissue sections and classify renal oncocytoma (RO, n = 11), clear cell renal cell carcinoma (ccRCC, n = 12) and chromophobe renal cell carcinoma (ChRCC, n = 5). Both methods were able to distinguish ccRCC, RO and ChRCC in cross-validation experiments. MSI correctly classified 87% of the patients whereas the rapid LC-MS/MS-based microproteomics approach correctly classified 100% of the patients. This strategy involving MSI and rapid proteome profiling by LC-MS/MS reveals molecular features of tumor sections and enables cancer subtype classification. Mass spectrometry provides a promising complementary approach to current pathological technologies for precise digitized diagnosis of diseases.
format Online
Article
Text
id pubmed-7646834
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Impact Journals LLC
record_format MEDLINE/PubMed
spelling pubmed-76468342020-11-17 Histo-molecular differentiation of renal cancer subtypes by mass spectrometry imaging and rapid proteome profiling of formalin-fixed paraffin-embedded tumor tissue sections Möginger, Uwe Marcussen, Niels Jensen, Ole N. Oncotarget Research Paper Pathology differentiation of renal cancer types is challenging due to tissue similarities or overlapping histological features of various tumor (sub) types. As assessment is often manually conducted outcomes can be prone to human error and therefore require high-level expertise and experience. Mass spectrometry can provide detailed histo-molecular information on tissue and is becoming increasingly popular in clinical settings. Spatially resolving technologies such as mass spectrometry imaging and quantitative microproteomics profiling in combination with machine learning approaches provide promising tools for automated tumor classification of clinical tissue sections. In this proof of concept study we used MALDI-MS imaging (MSI) and rapid LC-MS/MS-based microproteomics technologies (15 min/sample) to analyze formalin-fixed paraffin embedded (FFPE) tissue sections and classify renal oncocytoma (RO, n = 11), clear cell renal cell carcinoma (ccRCC, n = 12) and chromophobe renal cell carcinoma (ChRCC, n = 5). Both methods were able to distinguish ccRCC, RO and ChRCC in cross-validation experiments. MSI correctly classified 87% of the patients whereas the rapid LC-MS/MS-based microproteomics approach correctly classified 100% of the patients. This strategy involving MSI and rapid proteome profiling by LC-MS/MS reveals molecular features of tumor sections and enables cancer subtype classification. Mass spectrometry provides a promising complementary approach to current pathological technologies for precise digitized diagnosis of diseases. Impact Journals LLC 2020-11-03 /pmc/articles/PMC7646834/ /pubmed/33216824 http://dx.doi.org/10.18632/oncotarget.27787 Text en Copyright: © 2020 Möginger et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/3.0/) (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Paper
Möginger, Uwe
Marcussen, Niels
Jensen, Ole N.
Histo-molecular differentiation of renal cancer subtypes by mass spectrometry imaging and rapid proteome profiling of formalin-fixed paraffin-embedded tumor tissue sections
title Histo-molecular differentiation of renal cancer subtypes by mass spectrometry imaging and rapid proteome profiling of formalin-fixed paraffin-embedded tumor tissue sections
title_full Histo-molecular differentiation of renal cancer subtypes by mass spectrometry imaging and rapid proteome profiling of formalin-fixed paraffin-embedded tumor tissue sections
title_fullStr Histo-molecular differentiation of renal cancer subtypes by mass spectrometry imaging and rapid proteome profiling of formalin-fixed paraffin-embedded tumor tissue sections
title_full_unstemmed Histo-molecular differentiation of renal cancer subtypes by mass spectrometry imaging and rapid proteome profiling of formalin-fixed paraffin-embedded tumor tissue sections
title_short Histo-molecular differentiation of renal cancer subtypes by mass spectrometry imaging and rapid proteome profiling of formalin-fixed paraffin-embedded tumor tissue sections
title_sort histo-molecular differentiation of renal cancer subtypes by mass spectrometry imaging and rapid proteome profiling of formalin-fixed paraffin-embedded tumor tissue sections
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7646834/
https://www.ncbi.nlm.nih.gov/pubmed/33216824
http://dx.doi.org/10.18632/oncotarget.27787
work_keys_str_mv AT mogingeruwe histomoleculardifferentiationofrenalcancersubtypesbymassspectrometryimagingandrapidproteomeprofilingofformalinfixedparaffinembeddedtumortissuesections
AT marcussenniels histomoleculardifferentiationofrenalcancersubtypesbymassspectrometryimagingandrapidproteomeprofilingofformalinfixedparaffinembeddedtumortissuesections
AT jensenolen histomoleculardifferentiationofrenalcancersubtypesbymassspectrometryimagingandrapidproteomeprofilingofformalinfixedparaffinembeddedtumortissuesections