Cargando…

Human cathelicidin antimicrobial peptide suppresses proliferation, migration and invasion of oral carcinoma HSC-3 cells via a novel mechanism involving caspase-3 mediated apoptosis

Human cathelicidin antimicrobial peptide and its active product, LL-37 (CAMP/LL-37), exhibit a broad spectrum of antimicrobial effects. An increasing number of studies have shown that human CAMP/LL-37 also serves significant roles in various types of cancer. The primary aims of the present study wer...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Xi, Ji, Shenying, Si, Jia, Zhang, Xiangyu, Wang, Xiaoyan, Guo, Yong, Zou, Xianqiong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7646992/
https://www.ncbi.nlm.nih.gov/pubmed/33174023
http://dx.doi.org/10.3892/mmr.2020.11629
Descripción
Sumario:Human cathelicidin antimicrobial peptide and its active product, LL-37 (CAMP/LL-37), exhibit a broad spectrum of antimicrobial effects. An increasing number of studies have shown that human CAMP/LL-37 also serves significant roles in various types of cancer. The primary aims of the present study were to investigate the roles and mechanisms of human CAMP/LL-37 in oral squamous cell carcinoma (OSCC) cells. The results indicated that either LL-37 C-terminal deletion mutants (CDEL) or CAMP stable expression in HSC-3 cells reduced colony formation, proliferation, migration and invasion ability of the cells. Expression analysis demonstrated that either CDEL or CAMP stable expression in HSC-3 cells induced caspase-3 mediated apoptosis via the P53-Bcl-2/BAX signalling pathway, whereas the levels of cell cycle-related proteins, cyclin B1 and PKR-like ER kinase, were significantly upregulated in the CAMP, but not in the CDEL overexpressing cells. Transcriptional profile comparisons revealed that CDEL or CAMP stable expression in HSC-3 cells upregulated expression of genes involved in the IL-17-dependent pathway compared with the control. Taken together, these results suggest that CAMP may act as a tumour suppressor in OSCC cells, and the underlying mechanism involves the induction of caspase-3 mediated apoptosis via the P53-Bcl-2/BAX signalling pathway.