Cargando…
Global gene network exploration based on explainable artificial intelligence approach
In recent years, personalized gene regulatory networks have received significant attention, and interpretation of the multilayer networks has been a critical issue for a comprehensive understanding of gene regulatory systems. Although several statistical and machine learning approaches have been dev...
Autores principales: | Park, Heewon, Maruhashi, Koji, Yamaguchi, Rui, Imoto, Seiya, Miyano, Satoru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7647077/ https://www.ncbi.nlm.nih.gov/pubmed/33156825 http://dx.doi.org/10.1371/journal.pone.0241508 |
Ejemplares similares
-
Correction: Global gene network exploration based on explainable artificial intelligence approach
por: Park, Heewon, et al.
Publicado: (2021) -
Xprediction: Explainable EGFR-TKIs response prediction based on drug sensitivity specific gene networks
por: Park, Heewon, et al.
Publicado: (2022) -
PredictiveNetwork: predictive gene network estimation with application to gastric cancer drug response-predictive network analysis
por: Park, Heewon, et al.
Publicado: (2022) -
Comprehensive information-based differential gene regulatory networks analysis (CIdrgn): Application to gastric cancer and chemotherapy-responsive gene network identification
por: Park, Heewon, et al.
Publicado: (2023) -
Recursive Random Lasso (RRLasso) for Identifying Anti-Cancer Drug Targets
por: Park, Heewon, et al.
Publicado: (2015)