Cargando…

The SiaABC threonine phosphorylation pathway controls biofilm formation in response to carbon availability in Pseudomonas aeruginosa

The critical role of bacterial biofilms in chronic human infections calls for novel anti-biofilm strategies targeting the regulation of biofilm development. However, the regulation of biofilm development is very complex and can include multiple, highly interconnected signal transduction/response pat...

Descripción completa

Detalles Bibliográficos
Autores principales: Poh, Wee-Han, Lin, Jianqing, Colley, Brendan, Müller, Nicolai, Goh, Boon Chong, Schleheck, David, El Sahili, Abbas, Marquardt, Andreas, Liang, Yang, Kjelleberg, Staffan, Lescar, Julien, Rice, Scott A., Klebensberger, Janosch
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7647112/
https://www.ncbi.nlm.nih.gov/pubmed/33156827
http://dx.doi.org/10.1371/journal.pone.0241019
_version_ 1783606891298947072
author Poh, Wee-Han
Lin, Jianqing
Colley, Brendan
Müller, Nicolai
Goh, Boon Chong
Schleheck, David
El Sahili, Abbas
Marquardt, Andreas
Liang, Yang
Kjelleberg, Staffan
Lescar, Julien
Rice, Scott A.
Klebensberger, Janosch
author_facet Poh, Wee-Han
Lin, Jianqing
Colley, Brendan
Müller, Nicolai
Goh, Boon Chong
Schleheck, David
El Sahili, Abbas
Marquardt, Andreas
Liang, Yang
Kjelleberg, Staffan
Lescar, Julien
Rice, Scott A.
Klebensberger, Janosch
author_sort Poh, Wee-Han
collection PubMed
description The critical role of bacterial biofilms in chronic human infections calls for novel anti-biofilm strategies targeting the regulation of biofilm development. However, the regulation of biofilm development is very complex and can include multiple, highly interconnected signal transduction/response pathways, which are incompletely understood. We demonstrated previously that in the opportunistic, human pathogen P. aeruginosa, the PP2C-like protein phosphatase SiaA and the di-guanylate cyclase SiaD control the formation of macroscopic cellular aggregates, a type of suspended biofilms, in response to surfactant stress. In this study, we demonstrate that the SiaABC proteins represent a signal response pathway that functions through a partner switch mechanism to control biofilm formation. We also demonstrate that SiaABCD functionality is dependent on carbon substrate availability for a variety of substrates, and that upon carbon starvation, SiaB mutants show impaired dispersal, in particular with the primary fermentation product ethanol. This suggests that carbon availability is at least one of the key environmental cues integrated by the SiaABCD system. Further, our biochemical, physiological and crystallographic data reveals that the phosphatase SiaA and its kinase counterpart SiaB balance the phosphorylation status of their target protein SiaC at threonine 68 (T68). Crystallographic analysis of the SiaA-PP2C domain shows that SiaA is present as a dimer. Dynamic modelling of SiaA with SiaC suggested that SiaA interacts strongly with phosphorylated SiaC and dissociates rapidly upon dephosphorylation of SiaC. Further, we show that the known phosphatase inhibitor fumonisin inhibits SiaA mediated phosphatase activity in vitro. In conclusion, the present work improves our understanding of how P. aeuruginosa integrates specific environmental conditions, such as carbon availability and surfactant stress, to regulate cellular aggregation and biofilm formation. With the biochemical and structural characterization of SiaA, initial data on the catalytic inhibition of SiaA, and the interaction between SiaA and SiaC, our study identifies promising targets for the development of biofilm-interference drugs to combat infections of this aggressive opportunistic pathogen.
format Online
Article
Text
id pubmed-7647112
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-76471122020-11-16 The SiaABC threonine phosphorylation pathway controls biofilm formation in response to carbon availability in Pseudomonas aeruginosa Poh, Wee-Han Lin, Jianqing Colley, Brendan Müller, Nicolai Goh, Boon Chong Schleheck, David El Sahili, Abbas Marquardt, Andreas Liang, Yang Kjelleberg, Staffan Lescar, Julien Rice, Scott A. Klebensberger, Janosch PLoS One Research Article The critical role of bacterial biofilms in chronic human infections calls for novel anti-biofilm strategies targeting the regulation of biofilm development. However, the regulation of biofilm development is very complex and can include multiple, highly interconnected signal transduction/response pathways, which are incompletely understood. We demonstrated previously that in the opportunistic, human pathogen P. aeruginosa, the PP2C-like protein phosphatase SiaA and the di-guanylate cyclase SiaD control the formation of macroscopic cellular aggregates, a type of suspended biofilms, in response to surfactant stress. In this study, we demonstrate that the SiaABC proteins represent a signal response pathway that functions through a partner switch mechanism to control biofilm formation. We also demonstrate that SiaABCD functionality is dependent on carbon substrate availability for a variety of substrates, and that upon carbon starvation, SiaB mutants show impaired dispersal, in particular with the primary fermentation product ethanol. This suggests that carbon availability is at least one of the key environmental cues integrated by the SiaABCD system. Further, our biochemical, physiological and crystallographic data reveals that the phosphatase SiaA and its kinase counterpart SiaB balance the phosphorylation status of their target protein SiaC at threonine 68 (T68). Crystallographic analysis of the SiaA-PP2C domain shows that SiaA is present as a dimer. Dynamic modelling of SiaA with SiaC suggested that SiaA interacts strongly with phosphorylated SiaC and dissociates rapidly upon dephosphorylation of SiaC. Further, we show that the known phosphatase inhibitor fumonisin inhibits SiaA mediated phosphatase activity in vitro. In conclusion, the present work improves our understanding of how P. aeuruginosa integrates specific environmental conditions, such as carbon availability and surfactant stress, to regulate cellular aggregation and biofilm formation. With the biochemical and structural characterization of SiaA, initial data on the catalytic inhibition of SiaA, and the interaction between SiaA and SiaC, our study identifies promising targets for the development of biofilm-interference drugs to combat infections of this aggressive opportunistic pathogen. Public Library of Science 2020-11-06 /pmc/articles/PMC7647112/ /pubmed/33156827 http://dx.doi.org/10.1371/journal.pone.0241019 Text en © 2020 Poh et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Poh, Wee-Han
Lin, Jianqing
Colley, Brendan
Müller, Nicolai
Goh, Boon Chong
Schleheck, David
El Sahili, Abbas
Marquardt, Andreas
Liang, Yang
Kjelleberg, Staffan
Lescar, Julien
Rice, Scott A.
Klebensberger, Janosch
The SiaABC threonine phosphorylation pathway controls biofilm formation in response to carbon availability in Pseudomonas aeruginosa
title The SiaABC threonine phosphorylation pathway controls biofilm formation in response to carbon availability in Pseudomonas aeruginosa
title_full The SiaABC threonine phosphorylation pathway controls biofilm formation in response to carbon availability in Pseudomonas aeruginosa
title_fullStr The SiaABC threonine phosphorylation pathway controls biofilm formation in response to carbon availability in Pseudomonas aeruginosa
title_full_unstemmed The SiaABC threonine phosphorylation pathway controls biofilm formation in response to carbon availability in Pseudomonas aeruginosa
title_short The SiaABC threonine phosphorylation pathway controls biofilm formation in response to carbon availability in Pseudomonas aeruginosa
title_sort siaabc threonine phosphorylation pathway controls biofilm formation in response to carbon availability in pseudomonas aeruginosa
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7647112/
https://www.ncbi.nlm.nih.gov/pubmed/33156827
http://dx.doi.org/10.1371/journal.pone.0241019
work_keys_str_mv AT pohweehan thesiaabcthreoninephosphorylationpathwaycontrolsbiofilmformationinresponsetocarbonavailabilityinpseudomonasaeruginosa
AT linjianqing thesiaabcthreoninephosphorylationpathwaycontrolsbiofilmformationinresponsetocarbonavailabilityinpseudomonasaeruginosa
AT colleybrendan thesiaabcthreoninephosphorylationpathwaycontrolsbiofilmformationinresponsetocarbonavailabilityinpseudomonasaeruginosa
AT mullernicolai thesiaabcthreoninephosphorylationpathwaycontrolsbiofilmformationinresponsetocarbonavailabilityinpseudomonasaeruginosa
AT gohboonchong thesiaabcthreoninephosphorylationpathwaycontrolsbiofilmformationinresponsetocarbonavailabilityinpseudomonasaeruginosa
AT schleheckdavid thesiaabcthreoninephosphorylationpathwaycontrolsbiofilmformationinresponsetocarbonavailabilityinpseudomonasaeruginosa
AT elsahiliabbas thesiaabcthreoninephosphorylationpathwaycontrolsbiofilmformationinresponsetocarbonavailabilityinpseudomonasaeruginosa
AT marquardtandreas thesiaabcthreoninephosphorylationpathwaycontrolsbiofilmformationinresponsetocarbonavailabilityinpseudomonasaeruginosa
AT liangyang thesiaabcthreoninephosphorylationpathwaycontrolsbiofilmformationinresponsetocarbonavailabilityinpseudomonasaeruginosa
AT kjellebergstaffan thesiaabcthreoninephosphorylationpathwaycontrolsbiofilmformationinresponsetocarbonavailabilityinpseudomonasaeruginosa
AT lescarjulien thesiaabcthreoninephosphorylationpathwaycontrolsbiofilmformationinresponsetocarbonavailabilityinpseudomonasaeruginosa
AT ricescotta thesiaabcthreoninephosphorylationpathwaycontrolsbiofilmformationinresponsetocarbonavailabilityinpseudomonasaeruginosa
AT klebensbergerjanosch thesiaabcthreoninephosphorylationpathwaycontrolsbiofilmformationinresponsetocarbonavailabilityinpseudomonasaeruginosa
AT pohweehan siaabcthreoninephosphorylationpathwaycontrolsbiofilmformationinresponsetocarbonavailabilityinpseudomonasaeruginosa
AT linjianqing siaabcthreoninephosphorylationpathwaycontrolsbiofilmformationinresponsetocarbonavailabilityinpseudomonasaeruginosa
AT colleybrendan siaabcthreoninephosphorylationpathwaycontrolsbiofilmformationinresponsetocarbonavailabilityinpseudomonasaeruginosa
AT mullernicolai siaabcthreoninephosphorylationpathwaycontrolsbiofilmformationinresponsetocarbonavailabilityinpseudomonasaeruginosa
AT gohboonchong siaabcthreoninephosphorylationpathwaycontrolsbiofilmformationinresponsetocarbonavailabilityinpseudomonasaeruginosa
AT schleheckdavid siaabcthreoninephosphorylationpathwaycontrolsbiofilmformationinresponsetocarbonavailabilityinpseudomonasaeruginosa
AT elsahiliabbas siaabcthreoninephosphorylationpathwaycontrolsbiofilmformationinresponsetocarbonavailabilityinpseudomonasaeruginosa
AT marquardtandreas siaabcthreoninephosphorylationpathwaycontrolsbiofilmformationinresponsetocarbonavailabilityinpseudomonasaeruginosa
AT liangyang siaabcthreoninephosphorylationpathwaycontrolsbiofilmformationinresponsetocarbonavailabilityinpseudomonasaeruginosa
AT kjellebergstaffan siaabcthreoninephosphorylationpathwaycontrolsbiofilmformationinresponsetocarbonavailabilityinpseudomonasaeruginosa
AT lescarjulien siaabcthreoninephosphorylationpathwaycontrolsbiofilmformationinresponsetocarbonavailabilityinpseudomonasaeruginosa
AT ricescotta siaabcthreoninephosphorylationpathwaycontrolsbiofilmformationinresponsetocarbonavailabilityinpseudomonasaeruginosa
AT klebensbergerjanosch siaabcthreoninephosphorylationpathwaycontrolsbiofilmformationinresponsetocarbonavailabilityinpseudomonasaeruginosa