Cargando…
Imputation and characterization of uncoded self-harm in major mental illness using machine learning
OBJECTIVE: We aimed to impute uncoded self-harm in administrative claims data of individuals with major mental illness (MMI), characterize self-harm incidence, and identify factors associated with coding bias. MATERIALS AND METHODS: The IBM MarketScan database (2003-2016) was used to analyze visit-l...
Autores principales: | Kumar, Praveen, Nestsiarovich, Anastasiya, Nelson, Stuart J, Kerner, Berit, Perkins, Douglas J, Lambert, Christophe G |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7647246/ https://www.ncbi.nlm.nih.gov/pubmed/31651956 http://dx.doi.org/10.1093/jamia/ocz173 |
Ejemplares similares
-
Using Machine Learning Imputed Outcomes to Assess Drug-Dependent Risk of Self-Harm in Patients with Bipolar Disorder: A Comparative Effectiveness Study
por: Nestsiarovich, Anastasiya, et al.
Publicado: (2021) -
Comprehensive comparison of monotherapies for psychiatric hospitalization risk in bipolar disorders
por: Nestsiarovich, Anastasiya, et al.
Publicado: (2018) -
AlphaFamImpute: high-accuracy imputation in full-sib families from genotype-by-sequencing data
por: Whalen, Andrew, et al.
Publicado: (2020) -
RICOPILI: Rapid Imputation for COnsortias PIpeLIne
por: Lam, Max, et al.
Publicado: (2019) -
IMMerge: merging imputation data at scale
por: Zhu, Wanying, et al.
Publicado: (2022)