Cargando…
Unsupervised machine learning and prognostic factors of survival in chronic lymphocytic leukemia
OBJECTIVE: Unsupervised machine learning approaches hold promise for large-scale clinical data. However, the heterogeneity of clinical data raises new methodological challenges in feature selection, choosing a distance metric that captures biological meaning, and visualization. We hypothesized that...
Autores principales: | Coombes, Caitlin E, Abrams, Zachary B, Li, Suli, Abruzzo, Lynne V, Coombes, Kevin R |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7647286/ https://www.ncbi.nlm.nih.gov/pubmed/32483590 http://dx.doi.org/10.1093/jamia/ocaa060 |
Ejemplares similares
-
Mercator: a pipeline for multi-method, unsupervised visualization and distance generation
por: Abrams, Zachary B., et al.
Publicado: (2021) -
CytoGPS: a web-enabled karyotype analysis tool for cytogenetics
por: Abrams, Zachary B, et al.
Publicado: (2019) -
Pattern recognition in lymphoid malignancies using CytoGPS and Mercator
por: Abrams, Zachary B., et al.
Publicado: (2021) -
Trisomy 12 chronic lymphocytic leukemia expresses a unique set of activated and targetable pathways
por: Abruzzo, Lynne V., et al.
Publicado: (2018) -
Immunohistochemical detection of ZAP70 in chronic lymphocytic leukemia predicts immunoglobulin heavy chain gene mutation status and time to progression
por: Admirand, Joan H., et al.
Publicado: (2010)