Cargando…
Clinical Context–Aware Biomedical Text Summarization Using Deep Neural Network: Model Development and Validation
BACKGROUND: Automatic text summarization (ATS) enables users to retrieve meaningful evidence from big data of biomedical repositories to make complex clinical decisions. Deep neural and recurrent networks outperform traditional machine-learning techniques in areas of natural language processing and...
Autores principales: | Afzal, Muhammad, Alam, Fakhare, Malik, Khalid Mahmood, Malik, Ghaus M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7647812/ https://www.ncbi.nlm.nih.gov/pubmed/33095174 http://dx.doi.org/10.2196/19810 |
Ejemplares similares
-
Enhancing Biomedical Text Summarization Using Semantic Relation Extraction
por: Shang, Yue, et al.
Publicado: (2011) -
Abstractive Arabic Text Summarization Based on Deep Learning
por: Wazery, Y. M., et al.
Publicado: (2022) -
N-GPETS: Neural Attention Graph-Based Pretrained Statistical Model for Extractive Text Summarization
por: Umair, Muhammad, et al.
Publicado: (2022) -
Text Summarization Method Based on Gated Attention Graph Neural Network
por: Huang, Jingui, et al.
Publicado: (2023) -
Abstractive text summarization of low-resourced languages using deep learning
por: Shafiq, Nida, et al.
Publicado: (2023)