Cargando…
A Gaussian process regression model to predict energy contents of corn for poultry
The present study proposes a Gaussian process regression (GPR) approach to develop a model to predict true metabolizable energy corrected for nitrogen (TMEn) content of corn samples (as model output) for poultry given levels of feed chemical compositions of crude protein, ether extract, crude fiber,...
Autores principales: | Baiz, Abbas Abdullah, Ahmadi, Hamed, Shariatmadari, Farid, Karimi Torshizi, Mohammad Amir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7647822/ https://www.ncbi.nlm.nih.gov/pubmed/33142501 http://dx.doi.org/10.1016/j.psj.2020.07.044 |
Ejemplares similares
-
Assessing the nutritional equivalency of DL-methionine and L-methionine in broiler chickens: a meta-analytical study
por: Asasi, Roya, et al.
Publicado: (2023) -
Energy and phosphorus evaluation of poultry meal fed to broiler chickens using a regression method
por: Adekoya, Abidemi, et al.
Publicado: (2021) -
Debranching enzymes in corn/soybean meal–based poultry feeds: a review
por: Ward, Nelson E.
Publicado: (2020) -
Plectranthus amboinicus and rosemary (Rosmarinus officinalis L.) essential oils effects on performance, antioxidant activity, intestinal health, immune response, and plasma biochemistry in broiler chickens
por: Hosseinzadeh, Saied, et al.
Publicado: (2023) -
Factors affecting energy metabolism and evaluating net energy of poultry feed
por: Barzegar, Shahram, et al.
Publicado: (2019)