Cargando…

Effects of tryptophan and probiotic supplementation on growth and behavior in quail

In laying hens, a diet supplemented with tryptophan (Trp) has been shown to affect their pecking behavior. However, unlike this positive effect, Trp is also involved in negative effects on behavior and stress through indolic pathways. Indole production can be reduced by probiotics (Pro), thus we hyp...

Descripción completa

Detalles Bibliográficos
Autores principales: Yıldırım, A., Kraimi, N., Constantin, P., Mercerand, F., Leterrier, C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7647826/
https://www.ncbi.nlm.nih.gov/pubmed/33142436
http://dx.doi.org/10.1016/j.psj.2020.07.047
Descripción
Sumario:In laying hens, a diet supplemented with tryptophan (Trp) has been shown to affect their pecking behavior. However, unlike this positive effect, Trp is also involved in negative effects on behavior and stress through indolic pathways. Indole production can be reduced by probiotics (Pro), thus we hypothesized that Pro may prevent negative effects of Trp and increase beneficial effects on behavior in birds. Combined effects of Pro and Trp were also expected. To investigate the effects on behavior in birds of supplementing with a high level of Trp with or without Pro, Japanese quail were used because their behavior can be influenced by Pediococcus acidilactici, and they can be highly aggressive. Quails (n = 120) were assigned to 4 groups in a 2 × 2 factorial design for 55 d: C-C (control diet with usual Trp level, 0.3%; without Pro; n = 30), Trp-C (Trp: 2%; without Pro; n = 30), C-Pro (control diet; with Pro: 1 x 10(9) CFU/L P. acidilactici in drinking water; n = 30), and Trp-Pro (Trp 2%; with Pro; n = 30). Body weight was measured every week, and different tests were conducted to investigate behavioral characteristics of each quail. Contrary to our hypothesis, there was almost no interaction between Trp and Pro treatments. Tryptophan supplementation significantly (P < 0.05) reduced live weight up to 27 d, whereas Pro treatment had no effect. There was no significant difference between groups for tonic immobility variables (P > 0.05). The birds fed the high Trp diet spent significantly less time in the periphery of the open field than those fed the control diet and moved less in the arena during the social isolation test. Interindividual distances were significantly lower in males fed with Trp 2% than with the control diet, whereas Trp and Pro supplements interacted in females. The treatments did not affect sexual motivation in males. These results indicate that a high level of Trp reduced growth and appeared to enhance emotional reactivity in quails and that supplementing with Pro did not reduce these effects. In conclusion, feeding high Trp for 55 d cannot be recommended as a strategy to improve social behavior unlike effects observed in laying hens.