Cargando…
Task-evoked reconfiguration of the fronto-parietal network is associated with cognitive performance in brain tumor patients
In healthy participants, the strength of task-evoked network reconfigurations is associated with cognitive performance across several cognitive domains. It is, however, unclear whether the capacity for network reconfiguration also plays a role in cognitive deficits in brain tumor patients. In the cu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7647963/ https://www.ncbi.nlm.nih.gov/pubmed/31456158 http://dx.doi.org/10.1007/s11682-019-00189-2 |
Sumario: | In healthy participants, the strength of task-evoked network reconfigurations is associated with cognitive performance across several cognitive domains. It is, however, unclear whether the capacity for network reconfiguration also plays a role in cognitive deficits in brain tumor patients. In the current study, we examined whether the level of reconfiguration of the fronto-parietal (‘FPN’) and default mode network (‘DMN’) during task execution is correlated with cognitive performance in patients with different types of brain tumors. For this purpose, we combined data from a resting state and task-fMRI paradigm in patients with a glioma or meningioma. Cognitive performance was measured using the in-scanner working memory task, as well as an out-of-scanner cognitive flexibility task. Task-evoked changes in functional connectivity strength (defined as the mean of the absolute values of all connections) and in functional connectivity patterns within and between the FPN and DMN did not differ significantly across meningioma and fast (HGG) and slowly growing glioma (LGG) patients. Across these brain tumor patients, a significant and positive correlation was found between the level of task-evoked reconfiguration of the FPN and cognitive performance. This suggests that the capacity for FPN reconfiguration also plays a role in cognitive deficits in brain tumor patients, as was previously found for normal cognitive performance in healthy controls. |
---|