Cargando…
Learning to encode cellular responses to systematic perturbations with deep generative models
Cellular signaling systems play a vital role in maintaining homeostasis when a cell is exposed to different perturbations. Components of the systems are organized as hierarchical networks, and perturbing different components often leads to transcriptomic profiles that exhibit compositional statistic...
Autores principales: | Xue, Yifan, Ding, Michael Q., Lu, Xinghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7648057/ https://www.ncbi.nlm.nih.gov/pubmed/33159077 http://dx.doi.org/10.1038/s41540-020-00158-2 |
Ejemplares similares
-
A deep auto-encoder model for gene expression prediction
por: Xie, Rui, et al.
Publicado: (2017) -
Deep learning of value at risk through generative neural network models: The case of the Variational auto encoder
por: Brugière, Pierre, et al.
Publicado: (2023) -
De novo Prediction of Cell-Drug Sensitivities Using Deep Learning-based Graph Regularized Matrix Factorization
por: Ren, Shuangxia, et al.
Publicado: (2022) -
A novel method of using Deep Belief Networks and genetic perturbation data to search for yeast signaling pathways
por: Lu, Songjian, et al.
Publicado: (2018) -
Perturbing BEAMs: EEG adversarial attack to deep learning models for epilepsy diagnosing
por: Yu, Jianfeng, et al.
Publicado: (2023)