Cargando…
Extending schizophrenia diagnostic model to predict schizotypy in first-degree relatives
Recently, we developed a machine-learning algorithm “EMPaSchiz” that learns, from a training set of schizophrenia patients and healthy individuals, a model that predicts if a novel individual has schizophrenia, based on features extracted from his/her resting-state functional magnetic resonance imag...
Autores principales: | Kalmady, Sunil Vasu, Paul, Animesh Kumar, Greiner, Russell, Agrawal, Rimjhim, Amaresha, Anekal C., Shivakumar, Venkataram, Narayanaswamy, Janardhanan C., Greenshaw, Andrew J., Dursun, Serdar M., Venkatasubramanian, Ganesan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7648110/ https://www.ncbi.nlm.nih.gov/pubmed/33159092 http://dx.doi.org/10.1038/s41537-020-00119-y |
Ejemplares similares
-
Towards artificial intelligence in mental health by improving schizophrenia prediction with multiple brain parcellation ensemble-learning
por: Kalmady, Sunil Vasu, et al.
Publicado: (2019) -
Clinical correlates of parametric digit-symbol substitution test in schizophrenia
por: Amaresha, Anekal C., et al.
Publicado: (2014) -
Differential impact of interleukin-6 promoter gene polymorphism on hippocampal volume in antipsychotic-naïve schizophrenia patients
por: Shivakumar, Venkataram, et al.
Publicado: (2020) -
Superior temporal gyrus functional connectivity predicts transcranial direct current stimulation response in Schizophrenia: A machine learning study
por: Paul, Animesh Kumar, et al.
Publicado: (2022) -
Association of HLA-G 14bp INS/DEL Polymorphism with brain morphology in Schizophrenia
por: Rajasekaran, Ashwini, et al.
Publicado: (2014)