Cargando…
MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer
BACKGROUND: To use clinical and MRI radiomic features coupled with machine learning to assess HER2 expression level and predict pathologic response (pCR) in HER2 overexpressing breast cancer patients receiving neoadjuvant chemotherapy (NAC). METHODS: This retrospective study included 311 patients. p...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7648120/ https://www.ncbi.nlm.nih.gov/pubmed/33039708 http://dx.doi.org/10.1016/j.ebiom.2020.103042 |
_version_ | 1783607050715004928 |
---|---|
author | Bitencourt, Almir G.V. Gibbs, Peter Rossi Saccarelli, Carolina Daimiel, Isaac Lo Gullo, Roberto Fox, Michael J. Thakur, Sunitha Pinker, Katja Morris, Elizabeth A. Morrow, Monica Jochelson, Maxine S. |
author_facet | Bitencourt, Almir G.V. Gibbs, Peter Rossi Saccarelli, Carolina Daimiel, Isaac Lo Gullo, Roberto Fox, Michael J. Thakur, Sunitha Pinker, Katja Morris, Elizabeth A. Morrow, Monica Jochelson, Maxine S. |
author_sort | Bitencourt, Almir G.V. |
collection | PubMed |
description | BACKGROUND: To use clinical and MRI radiomic features coupled with machine learning to assess HER2 expression level and predict pathologic response (pCR) in HER2 overexpressing breast cancer patients receiving neoadjuvant chemotherapy (NAC). METHODS: This retrospective study included 311 patients. pCR was defined as no residual invasive carcinoma in the breast or axillary lymph nodes (ypT0/isN0). Radiomics/statistical analysis was performed using MATLAB and CERR software. After ROC and correlation analysis, selected radiomics parameters were advanced to machine learning modelling alongside clinical MRI-based parameters (lesion type, multifocality, size, nodal status). For predicting pCR, the data was split into a training and test set (80:20). FINDINGS: The overall pCR rate was 60.5% (188/311). The final model to predict HER2 heterogeneity utilised three MRI parameters (two clinical, one radiomic) for a sensitivity of 99.3% (277/279), specificity of 81.3% (26/32), and diagnostic accuracy of 97.4% (303/311). The final model to predict pCR included six MRI parameters (two clinical, four radiomic) for a sensitivity of 86.5% (32/37), specificity of 80.0% (20/25), and diagnostic accuracy of 83.9% (52/62) (test set); these results were independent of age and ER status, and outperformed the best model developed using clinical parameters only (p=0.029, comparison of proportion Chi-squared test). INTERPRETATION: The machine learning models, including both clinical and radiomics MRI features, can be used to assess HER2 expression level and can predict pCR after NAC in HER2 overexpressing breast cancer patients. FUNDING: NIH/NCI (P30CA008748), Susan G. Komen Foundation, Breast Cancer Research Foundation, Spanish Foundation Alfonso Martin Escudero, European School of Radiology. |
format | Online Article Text |
id | pubmed-7648120 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-76481202020-11-16 MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer Bitencourt, Almir G.V. Gibbs, Peter Rossi Saccarelli, Carolina Daimiel, Isaac Lo Gullo, Roberto Fox, Michael J. Thakur, Sunitha Pinker, Katja Morris, Elizabeth A. Morrow, Monica Jochelson, Maxine S. EBioMedicine Research Paper BACKGROUND: To use clinical and MRI radiomic features coupled with machine learning to assess HER2 expression level and predict pathologic response (pCR) in HER2 overexpressing breast cancer patients receiving neoadjuvant chemotherapy (NAC). METHODS: This retrospective study included 311 patients. pCR was defined as no residual invasive carcinoma in the breast or axillary lymph nodes (ypT0/isN0). Radiomics/statistical analysis was performed using MATLAB and CERR software. After ROC and correlation analysis, selected radiomics parameters were advanced to machine learning modelling alongside clinical MRI-based parameters (lesion type, multifocality, size, nodal status). For predicting pCR, the data was split into a training and test set (80:20). FINDINGS: The overall pCR rate was 60.5% (188/311). The final model to predict HER2 heterogeneity utilised three MRI parameters (two clinical, one radiomic) for a sensitivity of 99.3% (277/279), specificity of 81.3% (26/32), and diagnostic accuracy of 97.4% (303/311). The final model to predict pCR included six MRI parameters (two clinical, four radiomic) for a sensitivity of 86.5% (32/37), specificity of 80.0% (20/25), and diagnostic accuracy of 83.9% (52/62) (test set); these results were independent of age and ER status, and outperformed the best model developed using clinical parameters only (p=0.029, comparison of proportion Chi-squared test). INTERPRETATION: The machine learning models, including both clinical and radiomics MRI features, can be used to assess HER2 expression level and can predict pCR after NAC in HER2 overexpressing breast cancer patients. FUNDING: NIH/NCI (P30CA008748), Susan G. Komen Foundation, Breast Cancer Research Foundation, Spanish Foundation Alfonso Martin Escudero, European School of Radiology. Elsevier 2020-10-08 /pmc/articles/PMC7648120/ /pubmed/33039708 http://dx.doi.org/10.1016/j.ebiom.2020.103042 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Paper Bitencourt, Almir G.V. Gibbs, Peter Rossi Saccarelli, Carolina Daimiel, Isaac Lo Gullo, Roberto Fox, Michael J. Thakur, Sunitha Pinker, Katja Morris, Elizabeth A. Morrow, Monica Jochelson, Maxine S. MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer |
title | MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer |
title_full | MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer |
title_fullStr | MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer |
title_full_unstemmed | MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer |
title_short | MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer |
title_sort | mri-based machine learning radiomics can predict her2 expression level and pathologic response after neoadjuvant therapy in her2 overexpressing breast cancer |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7648120/ https://www.ncbi.nlm.nih.gov/pubmed/33039708 http://dx.doi.org/10.1016/j.ebiom.2020.103042 |
work_keys_str_mv | AT bitencourtalmirgv mribasedmachinelearningradiomicscanpredicther2expressionlevelandpathologicresponseafterneoadjuvanttherapyinher2overexpressingbreastcancer AT gibbspeter mribasedmachinelearningradiomicscanpredicther2expressionlevelandpathologicresponseafterneoadjuvanttherapyinher2overexpressingbreastcancer AT rossisaccarellicarolina mribasedmachinelearningradiomicscanpredicther2expressionlevelandpathologicresponseafterneoadjuvanttherapyinher2overexpressingbreastcancer AT daimielisaac mribasedmachinelearningradiomicscanpredicther2expressionlevelandpathologicresponseafterneoadjuvanttherapyinher2overexpressingbreastcancer AT logulloroberto mribasedmachinelearningradiomicscanpredicther2expressionlevelandpathologicresponseafterneoadjuvanttherapyinher2overexpressingbreastcancer AT foxmichaelj mribasedmachinelearningradiomicscanpredicther2expressionlevelandpathologicresponseafterneoadjuvanttherapyinher2overexpressingbreastcancer AT thakursunitha mribasedmachinelearningradiomicscanpredicther2expressionlevelandpathologicresponseafterneoadjuvanttherapyinher2overexpressingbreastcancer AT pinkerkatja mribasedmachinelearningradiomicscanpredicther2expressionlevelandpathologicresponseafterneoadjuvanttherapyinher2overexpressingbreastcancer AT morriselizabetha mribasedmachinelearningradiomicscanpredicther2expressionlevelandpathologicresponseafterneoadjuvanttherapyinher2overexpressingbreastcancer AT morrowmonica mribasedmachinelearningradiomicscanpredicther2expressionlevelandpathologicresponseafterneoadjuvanttherapyinher2overexpressingbreastcancer AT jochelsonmaxines mribasedmachinelearningradiomicscanpredicther2expressionlevelandpathologicresponseafterneoadjuvanttherapyinher2overexpressingbreastcancer |