Cargando…

MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer

BACKGROUND: To use clinical and MRI radiomic features coupled with machine learning to assess HER2 expression level and predict pathologic response (pCR) in HER2 overexpressing breast cancer patients receiving neoadjuvant chemotherapy (NAC). METHODS: This retrospective study included 311 patients. p...

Descripción completa

Detalles Bibliográficos
Autores principales: Bitencourt, Almir G.V., Gibbs, Peter, Rossi Saccarelli, Carolina, Daimiel, Isaac, Lo Gullo, Roberto, Fox, Michael J., Thakur, Sunitha, Pinker, Katja, Morris, Elizabeth A., Morrow, Monica, Jochelson, Maxine S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7648120/
https://www.ncbi.nlm.nih.gov/pubmed/33039708
http://dx.doi.org/10.1016/j.ebiom.2020.103042
_version_ 1783607050715004928
author Bitencourt, Almir G.V.
Gibbs, Peter
Rossi Saccarelli, Carolina
Daimiel, Isaac
Lo Gullo, Roberto
Fox, Michael J.
Thakur, Sunitha
Pinker, Katja
Morris, Elizabeth A.
Morrow, Monica
Jochelson, Maxine S.
author_facet Bitencourt, Almir G.V.
Gibbs, Peter
Rossi Saccarelli, Carolina
Daimiel, Isaac
Lo Gullo, Roberto
Fox, Michael J.
Thakur, Sunitha
Pinker, Katja
Morris, Elizabeth A.
Morrow, Monica
Jochelson, Maxine S.
author_sort Bitencourt, Almir G.V.
collection PubMed
description BACKGROUND: To use clinical and MRI radiomic features coupled with machine learning to assess HER2 expression level and predict pathologic response (pCR) in HER2 overexpressing breast cancer patients receiving neoadjuvant chemotherapy (NAC). METHODS: This retrospective study included 311 patients. pCR was defined as no residual invasive carcinoma in the breast or axillary lymph nodes (ypT0/isN0). Radiomics/statistical analysis was performed using MATLAB and CERR software. After ROC and correlation analysis, selected radiomics parameters were advanced to machine learning modelling alongside clinical MRI-based parameters (lesion type, multifocality, size, nodal status). For predicting pCR, the data was split into a training and test set (80:20). FINDINGS: The overall pCR rate was 60.5% (188/311). The final model to predict HER2 heterogeneity utilised three MRI parameters (two clinical, one radiomic) for a sensitivity of 99.3% (277/279), specificity of 81.3% (26/32), and diagnostic accuracy of 97.4% (303/311). The final model to predict pCR included six MRI parameters (two clinical, four radiomic) for a sensitivity of 86.5% (32/37), specificity of 80.0% (20/25), and diagnostic accuracy of 83.9% (52/62) (test set); these results were independent of age and ER status, and outperformed the best model developed using clinical parameters only (p=0.029, comparison of proportion Chi-squared test). INTERPRETATION: The machine learning models, including both clinical and radiomics MRI features, can be used to assess HER2 expression level and can predict pCR after NAC in HER2 overexpressing breast cancer patients. FUNDING: NIH/NCI (P30CA008748), Susan G. Komen Foundation, Breast Cancer Research Foundation, Spanish Foundation Alfonso Martin Escudero, European School of Radiology.
format Online
Article
Text
id pubmed-7648120
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-76481202020-11-16 MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer Bitencourt, Almir G.V. Gibbs, Peter Rossi Saccarelli, Carolina Daimiel, Isaac Lo Gullo, Roberto Fox, Michael J. Thakur, Sunitha Pinker, Katja Morris, Elizabeth A. Morrow, Monica Jochelson, Maxine S. EBioMedicine Research Paper BACKGROUND: To use clinical and MRI radiomic features coupled with machine learning to assess HER2 expression level and predict pathologic response (pCR) in HER2 overexpressing breast cancer patients receiving neoadjuvant chemotherapy (NAC). METHODS: This retrospective study included 311 patients. pCR was defined as no residual invasive carcinoma in the breast or axillary lymph nodes (ypT0/isN0). Radiomics/statistical analysis was performed using MATLAB and CERR software. After ROC and correlation analysis, selected radiomics parameters were advanced to machine learning modelling alongside clinical MRI-based parameters (lesion type, multifocality, size, nodal status). For predicting pCR, the data was split into a training and test set (80:20). FINDINGS: The overall pCR rate was 60.5% (188/311). The final model to predict HER2 heterogeneity utilised three MRI parameters (two clinical, one radiomic) for a sensitivity of 99.3% (277/279), specificity of 81.3% (26/32), and diagnostic accuracy of 97.4% (303/311). The final model to predict pCR included six MRI parameters (two clinical, four radiomic) for a sensitivity of 86.5% (32/37), specificity of 80.0% (20/25), and diagnostic accuracy of 83.9% (52/62) (test set); these results were independent of age and ER status, and outperformed the best model developed using clinical parameters only (p=0.029, comparison of proportion Chi-squared test). INTERPRETATION: The machine learning models, including both clinical and radiomics MRI features, can be used to assess HER2 expression level and can predict pCR after NAC in HER2 overexpressing breast cancer patients. FUNDING: NIH/NCI (P30CA008748), Susan G. Komen Foundation, Breast Cancer Research Foundation, Spanish Foundation Alfonso Martin Escudero, European School of Radiology. Elsevier 2020-10-08 /pmc/articles/PMC7648120/ /pubmed/33039708 http://dx.doi.org/10.1016/j.ebiom.2020.103042 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Paper
Bitencourt, Almir G.V.
Gibbs, Peter
Rossi Saccarelli, Carolina
Daimiel, Isaac
Lo Gullo, Roberto
Fox, Michael J.
Thakur, Sunitha
Pinker, Katja
Morris, Elizabeth A.
Morrow, Monica
Jochelson, Maxine S.
MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer
title MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer
title_full MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer
title_fullStr MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer
title_full_unstemmed MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer
title_short MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer
title_sort mri-based machine learning radiomics can predict her2 expression level and pathologic response after neoadjuvant therapy in her2 overexpressing breast cancer
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7648120/
https://www.ncbi.nlm.nih.gov/pubmed/33039708
http://dx.doi.org/10.1016/j.ebiom.2020.103042
work_keys_str_mv AT bitencourtalmirgv mribasedmachinelearningradiomicscanpredicther2expressionlevelandpathologicresponseafterneoadjuvanttherapyinher2overexpressingbreastcancer
AT gibbspeter mribasedmachinelearningradiomicscanpredicther2expressionlevelandpathologicresponseafterneoadjuvanttherapyinher2overexpressingbreastcancer
AT rossisaccarellicarolina mribasedmachinelearningradiomicscanpredicther2expressionlevelandpathologicresponseafterneoadjuvanttherapyinher2overexpressingbreastcancer
AT daimielisaac mribasedmachinelearningradiomicscanpredicther2expressionlevelandpathologicresponseafterneoadjuvanttherapyinher2overexpressingbreastcancer
AT logulloroberto mribasedmachinelearningradiomicscanpredicther2expressionlevelandpathologicresponseafterneoadjuvanttherapyinher2overexpressingbreastcancer
AT foxmichaelj mribasedmachinelearningradiomicscanpredicther2expressionlevelandpathologicresponseafterneoadjuvanttherapyinher2overexpressingbreastcancer
AT thakursunitha mribasedmachinelearningradiomicscanpredicther2expressionlevelandpathologicresponseafterneoadjuvanttherapyinher2overexpressingbreastcancer
AT pinkerkatja mribasedmachinelearningradiomicscanpredicther2expressionlevelandpathologicresponseafterneoadjuvanttherapyinher2overexpressingbreastcancer
AT morriselizabetha mribasedmachinelearningradiomicscanpredicther2expressionlevelandpathologicresponseafterneoadjuvanttherapyinher2overexpressingbreastcancer
AT morrowmonica mribasedmachinelearningradiomicscanpredicther2expressionlevelandpathologicresponseafterneoadjuvanttherapyinher2overexpressingbreastcancer
AT jochelsonmaxines mribasedmachinelearningradiomicscanpredicther2expressionlevelandpathologicresponseafterneoadjuvanttherapyinher2overexpressingbreastcancer