Cargando…
MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer
BACKGROUND: To use clinical and MRI radiomic features coupled with machine learning to assess HER2 expression level and predict pathologic response (pCR) in HER2 overexpressing breast cancer patients receiving neoadjuvant chemotherapy (NAC). METHODS: This retrospective study included 311 patients. p...
Autores principales: | Bitencourt, Almir G.V., Gibbs, Peter, Rossi Saccarelli, Carolina, Daimiel, Isaac, Lo Gullo, Roberto, Fox, Michael J., Thakur, Sunitha, Pinker, Katja, Morris, Elizabeth A., Morrow, Monica, Jochelson, Maxine S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7648120/ https://www.ncbi.nlm.nih.gov/pubmed/33039708 http://dx.doi.org/10.1016/j.ebiom.2020.103042 |
Ejemplares similares
-
Improved characterization of sub-centimeter enhancing breast masses on MRI with radiomics and machine learning in BRCA mutation carriers
por: Lo Gullo, Roberto, et al.
Publicado: (2020) -
Diagnostic value of diffusion-weighted imaging with synthetic b-values in breast tumors: comparison with dynamic contrast-enhanced and multiparametric MRI
por: Daimiel Naranjo, Isaac, et al.
Publicado: (2020) -
MRI background parenchymal enhancement, fibroglandular tissue, and mammographic breast density in patients with invasive lobular breast cancer on adjuvant endocrine hormonal treatment: associations with survival
por: Lo Gullo, Roberto, et al.
Publicado: (2020) -
Breast Lesion Classification with Multiparametric Breast MRI Using Radiomics and Machine Learning: A Comparison with Radiologists’ Performance
por: Daimiel Naranjo, Isaac, et al.
Publicado: (2022) -
Diagnostic value of radiomics and machine learning with dynamic contrast-enhanced magnetic resonance imaging for patients with atypical ductal hyperplasia in predicting malignant upgrade
por: Lo Gullo, Roberto, et al.
Publicado: (2021)