Cargando…
Artificial intelligence quantified tumour-stroma ratio is an independent predictor for overall survival in resectable colorectal cancer
BACKGROUND: An artificial intelligence method could accelerate the clinical implementation of tumour-stroma ratio (TSR), which has prognostic relevance in colorectal cancer (CRC). We, therefore, developed a deep learning model for the fully automated TSR quantification on routine haematoxylin and eo...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7648125/ https://www.ncbi.nlm.nih.gov/pubmed/33039706 http://dx.doi.org/10.1016/j.ebiom.2020.103054 |
_version_ | 1783607051663966208 |
---|---|
author | Zhao, Ke Li, Zhenhui Yao, Su Wang, Yingyi Wu, Xiaomei Xu, Zeyan Wu, Lin Huang, Yanqi Liang, Changhong Liu, Zaiyi |
author_facet | Zhao, Ke Li, Zhenhui Yao, Su Wang, Yingyi Wu, Xiaomei Xu, Zeyan Wu, Lin Huang, Yanqi Liang, Changhong Liu, Zaiyi |
author_sort | Zhao, Ke |
collection | PubMed |
description | BACKGROUND: An artificial intelligence method could accelerate the clinical implementation of tumour-stroma ratio (TSR), which has prognostic relevance in colorectal cancer (CRC). We, therefore, developed a deep learning model for the fully automated TSR quantification on routine haematoxylin and eosin (HE) stained whole-slide images (WSI) and further investigated its prognostic validity for patient stratification. METHODS: We trained a convolutional neural network (CNN) model using transfer learning, with its nine-class tissue classification performance evaluated in two independent test sets. Patch-level segmentation on WSI HE slides was performed using the model, with TSR subsequently derived. A discovery (N=499) and validation cohort (N=315) were used to evaluate the prognostic value of TSR for overall survival (OS). FINDINGS: The CNN-quantified TSR was a prognostic factor, independently of other clinicopathologic characteristics, with stroma-high associated with reduced OS in the discovery (HR 1.72, 95% CI 1.24-2.37, P=0.001) and validation cohort (2.08, 1.26-3.42, 0.004). Integrating TSR into a Cox model with other risk factors showed improved prognostic capability. INTERPRETATION: We developed a deep learning model to quantify TSR based on histologic WSI of CRC and demonstrated its prognostic validity for patient stratification for OS in two independent CRC patient cohorts. This fully automatic approach allows for the objective and standardised application while reducing pathologists' workload. Thus, it can potentially be of significant aid in clinical prognosis prediction and decision-making. FUNDING: National Key Research and Development Program of China, National Science Fund for Distinguished Young Scholar, and National Science Foundation for Young Scientists of China. |
format | Online Article Text |
id | pubmed-7648125 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-76481252020-11-16 Artificial intelligence quantified tumour-stroma ratio is an independent predictor for overall survival in resectable colorectal cancer Zhao, Ke Li, Zhenhui Yao, Su Wang, Yingyi Wu, Xiaomei Xu, Zeyan Wu, Lin Huang, Yanqi Liang, Changhong Liu, Zaiyi EBioMedicine Research Paper BACKGROUND: An artificial intelligence method could accelerate the clinical implementation of tumour-stroma ratio (TSR), which has prognostic relevance in colorectal cancer (CRC). We, therefore, developed a deep learning model for the fully automated TSR quantification on routine haematoxylin and eosin (HE) stained whole-slide images (WSI) and further investigated its prognostic validity for patient stratification. METHODS: We trained a convolutional neural network (CNN) model using transfer learning, with its nine-class tissue classification performance evaluated in two independent test sets. Patch-level segmentation on WSI HE slides was performed using the model, with TSR subsequently derived. A discovery (N=499) and validation cohort (N=315) were used to evaluate the prognostic value of TSR for overall survival (OS). FINDINGS: The CNN-quantified TSR was a prognostic factor, independently of other clinicopathologic characteristics, with stroma-high associated with reduced OS in the discovery (HR 1.72, 95% CI 1.24-2.37, P=0.001) and validation cohort (2.08, 1.26-3.42, 0.004). Integrating TSR into a Cox model with other risk factors showed improved prognostic capability. INTERPRETATION: We developed a deep learning model to quantify TSR based on histologic WSI of CRC and demonstrated its prognostic validity for patient stratification for OS in two independent CRC patient cohorts. This fully automatic approach allows for the objective and standardised application while reducing pathologists' workload. Thus, it can potentially be of significant aid in clinical prognosis prediction and decision-making. FUNDING: National Key Research and Development Program of China, National Science Fund for Distinguished Young Scholar, and National Science Foundation for Young Scientists of China. Elsevier 2020-10-08 /pmc/articles/PMC7648125/ /pubmed/33039706 http://dx.doi.org/10.1016/j.ebiom.2020.103054 Text en © 2020 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Paper Zhao, Ke Li, Zhenhui Yao, Su Wang, Yingyi Wu, Xiaomei Xu, Zeyan Wu, Lin Huang, Yanqi Liang, Changhong Liu, Zaiyi Artificial intelligence quantified tumour-stroma ratio is an independent predictor for overall survival in resectable colorectal cancer |
title | Artificial intelligence quantified tumour-stroma ratio is an independent predictor for overall survival in resectable colorectal cancer |
title_full | Artificial intelligence quantified tumour-stroma ratio is an independent predictor for overall survival in resectable colorectal cancer |
title_fullStr | Artificial intelligence quantified tumour-stroma ratio is an independent predictor for overall survival in resectable colorectal cancer |
title_full_unstemmed | Artificial intelligence quantified tumour-stroma ratio is an independent predictor for overall survival in resectable colorectal cancer |
title_short | Artificial intelligence quantified tumour-stroma ratio is an independent predictor for overall survival in resectable colorectal cancer |
title_sort | artificial intelligence quantified tumour-stroma ratio is an independent predictor for overall survival in resectable colorectal cancer |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7648125/ https://www.ncbi.nlm.nih.gov/pubmed/33039706 http://dx.doi.org/10.1016/j.ebiom.2020.103054 |
work_keys_str_mv | AT zhaoke artificialintelligencequantifiedtumourstromaratioisanindependentpredictorforoverallsurvivalinresectablecolorectalcancer AT lizhenhui artificialintelligencequantifiedtumourstromaratioisanindependentpredictorforoverallsurvivalinresectablecolorectalcancer AT yaosu artificialintelligencequantifiedtumourstromaratioisanindependentpredictorforoverallsurvivalinresectablecolorectalcancer AT wangyingyi artificialintelligencequantifiedtumourstromaratioisanindependentpredictorforoverallsurvivalinresectablecolorectalcancer AT wuxiaomei artificialintelligencequantifiedtumourstromaratioisanindependentpredictorforoverallsurvivalinresectablecolorectalcancer AT xuzeyan artificialintelligencequantifiedtumourstromaratioisanindependentpredictorforoverallsurvivalinresectablecolorectalcancer AT wulin artificialintelligencequantifiedtumourstromaratioisanindependentpredictorforoverallsurvivalinresectablecolorectalcancer AT huangyanqi artificialintelligencequantifiedtumourstromaratioisanindependentpredictorforoverallsurvivalinresectablecolorectalcancer AT liangchanghong artificialintelligencequantifiedtumourstromaratioisanindependentpredictorforoverallsurvivalinresectablecolorectalcancer AT liuzaiyi artificialintelligencequantifiedtumourstromaratioisanindependentpredictorforoverallsurvivalinresectablecolorectalcancer |