Cargando…
Artificial intelligence quantified tumour-stroma ratio is an independent predictor for overall survival in resectable colorectal cancer
BACKGROUND: An artificial intelligence method could accelerate the clinical implementation of tumour-stroma ratio (TSR), which has prognostic relevance in colorectal cancer (CRC). We, therefore, developed a deep learning model for the fully automated TSR quantification on routine haematoxylin and eo...
Autores principales: | Zhao, Ke, Li, Zhenhui, Yao, Su, Wang, Yingyi, Wu, Xiaomei, Xu, Zeyan, Wu, Lin, Huang, Yanqi, Liang, Changhong, Liu, Zaiyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7648125/ https://www.ncbi.nlm.nih.gov/pubmed/33039706 http://dx.doi.org/10.1016/j.ebiom.2020.103054 |
Ejemplares similares
-
Artificial intelligence for quantifying immune infiltrates interacting with stroma in colorectal cancer
por: Yang, Jing, et al.
Publicado: (2022) -
Prognostic value of a modified Immunoscore in patients with stage I−III resectable colon cancer
por: Zhao, Ke, et al.
Publicado: (2021) -
A deep learning quantified stroma-immune score to predict survival of patients with stage II–III colorectal cancer
por: Xu, Zeyan, et al.
Publicado: (2021) -
The role of artificial intelligence to quantify the tumour-stroma ratio for survival in colorectal cancer
por: Smit, Marloes A, et al.
Publicado: (2020) -
The value of the tumour-stroma ratio for predicting neoadjuvant chemoradiotherapy response in locally advanced rectal cancer: a case control study
por: Liang, Yanting, et al.
Publicado: (2021)