Cargando…
Prediction of enhancer–promoter interactions using the cross-cell type information and domain adversarial neural network
BACKGROUND: Enhancer–promoter interactions (EPIs) play key roles in transcriptional regulation and disease progression. Although several computational methods have been developed to predict such interactions, their performances are not satisfactory when training and testing data from different cell...
Autores principales: | Jing, Fang, Zhang, Shao-Wu, Zhang, Shihua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7648314/ https://www.ncbi.nlm.nih.gov/pubmed/33160328 http://dx.doi.org/10.1186/s12859-020-03844-4 |
Ejemplares similares
-
Cross-species behavior analysis with attention-based domain-adversarial deep neural networks
por: Maekawa, Takuya, et al.
Publicado: (2021) -
A selective kernel-based cycle-consistent generative adversarial network for unpaired low-dose CT denoising
por: Tan, Chaoqun, et al.
Publicado: (2022) -
Conditional Adversarial Domain Adaptation Neural Network for Motor Imagery EEG Decoding
por: Tang, Xingliang, et al.
Publicado: (2020) -
Automatic sleep staging of single-channel EEG based on domain adversarial neural networks and domain self-attention
por: Gao, Dong-Rui, et al.
Publicado: (2023) -
Enhancing Fairness in Disease Prediction by Optimizing Multiple Domain Adversarial Networks
por: Li, Bin, et al.
Publicado: (2023)