Cargando…
Human yolk sac-like haematopoiesis generates RUNX1-, GFI1- and/or GFI1B-dependent blood and SOX17-positive endothelium
The genetic regulatory network controlling early fate choices during human blood cell development are not well understood. We used human pluripotent stem cell reporter lines to track the development of endothelial and haematopoietic populations in an in vitro model of human yolk-sac development. We...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists Ltd
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7648599/ https://www.ncbi.nlm.nih.gov/pubmed/33028609 http://dx.doi.org/10.1242/dev.193037 |
_version_ | 1783607143098744832 |
---|---|
author | Bruveris, Freya F. Ng, Elizabeth S. Leitoguinho, Ana Rita Motazedian, Ali Vlahos, Katerina Sourris, Koula Mayberry, Robyn McDonald, Penelope Azzola, Lisa Davidson, Nadia M. Oshlack, Alicia Stanley, Edouard G. Elefanty, Andrew G. |
author_facet | Bruveris, Freya F. Ng, Elizabeth S. Leitoguinho, Ana Rita Motazedian, Ali Vlahos, Katerina Sourris, Koula Mayberry, Robyn McDonald, Penelope Azzola, Lisa Davidson, Nadia M. Oshlack, Alicia Stanley, Edouard G. Elefanty, Andrew G. |
author_sort | Bruveris, Freya F. |
collection | PubMed |
description | The genetic regulatory network controlling early fate choices during human blood cell development are not well understood. We used human pluripotent stem cell reporter lines to track the development of endothelial and haematopoietic populations in an in vitro model of human yolk-sac development. We identified SOX17(−)CD34(+)CD43(−) endothelial cells at day 2 of blast colony development, as a haemangioblast-like branch point from which SOX17(−)CD34(+)CD43(+) blood cells and SOX17(+)CD34(+)CD43(−) endothelium subsequently arose. Most human blood cell development was dependent on RUNX1. Deletion of RUNX1 only permitted a single wave of yolk sac-like primitive erythropoiesis, but no yolk sac myelopoiesis or aorta-gonad-mesonephros (AGM)-like haematopoiesis. Blocking GFI1 and/or GFI1B activity with a small molecule inhibitor abrogated all blood cell development, even in cell lines with an intact RUNX1 gene. Together, our data define the hierarchical requirements for RUNX1, GFI1 and/or GFI1B during early human haematopoiesis arising from a yolk sac-like SOX17-negative haemogenic endothelial intermediate. |
format | Online Article Text |
id | pubmed-7648599 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Company of Biologists Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-76485992020-11-16 Human yolk sac-like haematopoiesis generates RUNX1-, GFI1- and/or GFI1B-dependent blood and SOX17-positive endothelium Bruveris, Freya F. Ng, Elizabeth S. Leitoguinho, Ana Rita Motazedian, Ali Vlahos, Katerina Sourris, Koula Mayberry, Robyn McDonald, Penelope Azzola, Lisa Davidson, Nadia M. Oshlack, Alicia Stanley, Edouard G. Elefanty, Andrew G. Development Human Development The genetic regulatory network controlling early fate choices during human blood cell development are not well understood. We used human pluripotent stem cell reporter lines to track the development of endothelial and haematopoietic populations in an in vitro model of human yolk-sac development. We identified SOX17(−)CD34(+)CD43(−) endothelial cells at day 2 of blast colony development, as a haemangioblast-like branch point from which SOX17(−)CD34(+)CD43(+) blood cells and SOX17(+)CD34(+)CD43(−) endothelium subsequently arose. Most human blood cell development was dependent on RUNX1. Deletion of RUNX1 only permitted a single wave of yolk sac-like primitive erythropoiesis, but no yolk sac myelopoiesis or aorta-gonad-mesonephros (AGM)-like haematopoiesis. Blocking GFI1 and/or GFI1B activity with a small molecule inhibitor abrogated all blood cell development, even in cell lines with an intact RUNX1 gene. Together, our data define the hierarchical requirements for RUNX1, GFI1 and/or GFI1B during early human haematopoiesis arising from a yolk sac-like SOX17-negative haemogenic endothelial intermediate. The Company of Biologists Ltd 2020-10-29 /pmc/articles/PMC7648599/ /pubmed/33028609 http://dx.doi.org/10.1242/dev.193037 Text en © 2020. Published by The Company of Biologists Ltd http://creativecommons.org/licenses/by/4.0This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | Human Development Bruveris, Freya F. Ng, Elizabeth S. Leitoguinho, Ana Rita Motazedian, Ali Vlahos, Katerina Sourris, Koula Mayberry, Robyn McDonald, Penelope Azzola, Lisa Davidson, Nadia M. Oshlack, Alicia Stanley, Edouard G. Elefanty, Andrew G. Human yolk sac-like haematopoiesis generates RUNX1-, GFI1- and/or GFI1B-dependent blood and SOX17-positive endothelium |
title | Human yolk sac-like haematopoiesis generates RUNX1-, GFI1- and/or GFI1B-dependent blood and SOX17-positive endothelium |
title_full | Human yolk sac-like haematopoiesis generates RUNX1-, GFI1- and/or GFI1B-dependent blood and SOX17-positive endothelium |
title_fullStr | Human yolk sac-like haematopoiesis generates RUNX1-, GFI1- and/or GFI1B-dependent blood and SOX17-positive endothelium |
title_full_unstemmed | Human yolk sac-like haematopoiesis generates RUNX1-, GFI1- and/or GFI1B-dependent blood and SOX17-positive endothelium |
title_short | Human yolk sac-like haematopoiesis generates RUNX1-, GFI1- and/or GFI1B-dependent blood and SOX17-positive endothelium |
title_sort | human yolk sac-like haematopoiesis generates runx1-, gfi1- and/or gfi1b-dependent blood and sox17-positive endothelium |
topic | Human Development |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7648599/ https://www.ncbi.nlm.nih.gov/pubmed/33028609 http://dx.doi.org/10.1242/dev.193037 |
work_keys_str_mv | AT bruverisfreyaf humanyolksaclikehaematopoiesisgeneratesrunx1gfi1andorgfi1bdependentbloodandsox17positiveendothelium AT ngelizabeths humanyolksaclikehaematopoiesisgeneratesrunx1gfi1andorgfi1bdependentbloodandsox17positiveendothelium AT leitoguinhoanarita humanyolksaclikehaematopoiesisgeneratesrunx1gfi1andorgfi1bdependentbloodandsox17positiveendothelium AT motazedianali humanyolksaclikehaematopoiesisgeneratesrunx1gfi1andorgfi1bdependentbloodandsox17positiveendothelium AT vlahoskaterina humanyolksaclikehaematopoiesisgeneratesrunx1gfi1andorgfi1bdependentbloodandsox17positiveendothelium AT sourriskoula humanyolksaclikehaematopoiesisgeneratesrunx1gfi1andorgfi1bdependentbloodandsox17positiveendothelium AT mayberryrobyn humanyolksaclikehaematopoiesisgeneratesrunx1gfi1andorgfi1bdependentbloodandsox17positiveendothelium AT mcdonaldpenelope humanyolksaclikehaematopoiesisgeneratesrunx1gfi1andorgfi1bdependentbloodandsox17positiveendothelium AT azzolalisa humanyolksaclikehaematopoiesisgeneratesrunx1gfi1andorgfi1bdependentbloodandsox17positiveendothelium AT davidsonnadiam humanyolksaclikehaematopoiesisgeneratesrunx1gfi1andorgfi1bdependentbloodandsox17positiveendothelium AT oshlackalicia humanyolksaclikehaematopoiesisgeneratesrunx1gfi1andorgfi1bdependentbloodandsox17positiveendothelium AT stanleyedouardg humanyolksaclikehaematopoiesisgeneratesrunx1gfi1andorgfi1bdependentbloodandsox17positiveendothelium AT elefantyandrewg humanyolksaclikehaematopoiesisgeneratesrunx1gfi1andorgfi1bdependentbloodandsox17positiveendothelium |