Cargando…

Molecular determinants that govern scaRNA processing by Drosha/DGCR8

The Cajal body (CB) is a subnuclear domain that participates in the biogenesis of many different types of ribonucleoproteins (RNPs), including small nuclear RNPs (snRNPs), small Cajal body-specific RNPs (scaRNPs) and telomerase. Most scaRNAs, the RNA component of scaRNPs, accumulate in CBs. However,...

Descripción completa

Detalles Bibliográficos
Autores principales: McLaurin, Douglas M., Logan, Madelyn K., Lett, Katheryn E., Hebert, Michael D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7648615/
https://www.ncbi.nlm.nih.gov/pubmed/33037012
http://dx.doi.org/10.1242/bio.054619
Descripción
Sumario:The Cajal body (CB) is a subnuclear domain that participates in the biogenesis of many different types of ribonucleoproteins (RNPs), including small nuclear RNPs (snRNPs), small Cajal body-specific RNPs (scaRNPs) and telomerase. Most scaRNAs, the RNA component of scaRNPs, accumulate in CBs. However, there are three scaRNAs (scaRNA 2, 9, and 17) that are known to be processed into small, nucleolar-enriched fragments. Evidence suggests that these fragments are packaged into a new class of RNPs, called regulatory RNPs (regRNPs), and may modify small nucleolar RNP (snoRNP) activity, thus playing a role in rRNA modification. However, the mechanism by which these fragments are produced is unknown. Previous work has reported the involvement of Drosha and DGCR8 in the cleavage of primary-scaRNA9. Here, we expand on that knowledge by identifying sequence elements necessary for the efficient production of these RNA fragments and demonstrate that primary scaRNA 2 and 17 are also processed by the Drosha-DGCR8 complex. Collectively, our work establishes new factors in the scaRNP biogenesis pathway and adds to the ever-expanding list of noncanonical functions for the microprocessor complex.