Cargando…
Benchmarking of cell type deconvolution pipelines for transcriptomics data
Many computational methods have been developed to infer cell type proportions from bulk transcriptomics data. However, an evaluation of the impact of data transformation, pre-processing, marker selection, cell type composition and choice of methodology on the deconvolution results is still lacking....
Autores principales: | Avila Cobos, Francisco, Alquicira-Hernandez, José, Powell, Joseph E., Mestdagh, Pieter, De Preter, Katleen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7648640/ https://www.ncbi.nlm.nih.gov/pubmed/33159064 http://dx.doi.org/10.1038/s41467-020-19015-1 |
Ejemplares similares
-
Author Correction: Benchmarking of cell type deconvolution pipelines for transcriptomics data
por: Cobos, Francisco Avila, et al.
Publicado: (2020) -
Benchmarking pipelines for subclonal deconvolution of bulk tumour sequencing data
por: Tanner, Georgette, et al.
Publicado: (2021) -
Benchmarking and integration of methods for deconvoluting spatial transcriptomic data
por: Yan, Lulu, et al.
Publicado: (2022) -
Zipper plot: visualizing transcriptional activity of genomic regions
por: Avila Cobos, Francisco, et al.
Publicado: (2017) -
Effective methods for bulk RNA-seq deconvolution using scnRNA-seq transcriptomes
por: Cobos, Francisco Avila, et al.
Publicado: (2023)