Cargando…
Antiviral peptides against Enterovirus A71 causing hand, foot and mouth disease
The emergence of new and resistant viruses is a serious global burden. Conventional antiviral therapy with small molecules has led to the development of resistant mutants. In the case of hand, foot and mouth disease (HFMD), the absence of a US-FDA approved vaccine calls for urgent need to develop an...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7648656/ https://www.ncbi.nlm.nih.gov/pubmed/33171280 http://dx.doi.org/10.1016/j.peptides.2020.170443 |
Sumario: | The emergence of new and resistant viruses is a serious global burden. Conventional antiviral therapy with small molecules has led to the development of resistant mutants. In the case of hand, foot and mouth disease (HFMD), the absence of a US-FDA approved vaccine calls for urgent need to develop an antiviral that could serve as a safe, potent and robust therapy against the neurovirulent Enterovirus A71 (EV-A71). Natural peptides such as lactoferrin, melittin and synthetic peptides such as SP40, RGDS and LVLQTM have been studied against EV-A71 and have shown promising results as potent antivirals in pre-clinical studies. Peptides are considered safe, efficacious and pose fewer chances of resistance. Poor pharmacokinetic features of peptides can be overcome by the use of chemical modifications to improve in vivo delivery particularly by oral route. The use of nanotechnology can remarkably assist in the oral delivery of peptides and enhance stability in vivo. This can greatly increase patient compliance and make it more attractive as antiviral therapy. |
---|