Cargando…
Designing accurate emulators for scientific processes using calibration-driven deep models
Predictive models that accurately emulate complex scientific processes can achieve speed-ups over numerical simulators or experiments and at the same time provide surrogates for improving the subsequent analysis. Consequently, there is a recent surge in utilizing modern machine learning methods to b...
Autores principales: | Thiagarajan, Jayaraman J., Venkatesh, Bindya, Anirudh, Rushil, Bremer, Peer-Timo, Gaffney, Jim, Anderson, Gemma, Spears, Brian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7648787/ https://www.ncbi.nlm.nih.gov/pubmed/33159053 http://dx.doi.org/10.1038/s41467-020-19448-8 |
Ejemplares similares
-
Improved surrogates in inertial confinement fusion with manifold and cycle consistencies
por: Anirudh, Rushil, et al.
Publicado: (2020) -
MARGIN: Uncovering Deep Neural Networks Using Graph Signal Analysis
por: Anirudh, Rushil, et al.
Publicado: (2021) -
Digital Impedance Emulator for Battery Measurement System Calibration
por: Santoni, Francesco, et al.
Publicado: (2021) -
Bayesian Calibration of Electrophysiology Models Using Restitution Curve Emulators
por: Coveney, Sam, et al.
Publicado: (2021) -
Emulator-based Bayesian calibration of the CISNET colorectal cancer models
por: Pineda-Antunez, Carlos, et al.
Publicado: (2023)