Cargando…
Deep learning-enabled multi-organ segmentation in whole-body mouse scans
Whole-body imaging of mice is a key source of information for research. Organ segmentation is a prerequisite for quantitative analysis but is a tedious and error-prone task if done manually. Here, we present a deep learning solution called AIMOS that automatically segments major organs (brain, lungs...
Autores principales: | Schoppe, Oliver, Pan, Chenchen, Coronel, Javier, Mai, Hongcheng, Rong, Zhouyi, Todorov, Mihail Ivilinov, Müskes, Annemarie, Navarro, Fernando, Li, Hongwei, Ertürk, Ali, Menze, Bjoern H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7648799/ https://www.ncbi.nlm.nih.gov/pubmed/33159057 http://dx.doi.org/10.1038/s41467-020-19449-7 |
Ejemplares similares
-
Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull-meninges connections
por: Cai, Ruiyao, et al.
Publicado: (2018) -
A guidebook for DISCO tissue clearing
por: Molbay, Muge, et al.
Publicado: (2021) -
Mapping of neuroinflammation-induced hypoxia in the spinal cord using optoacoustic imaging
por: Ramos-Vega, Marta, et al.
Publicado: (2022) -
Efficient Claustrum Segmentation in T2-weighted Neonatal Brain MRI Using Transfer Learning from Adult Scans
por: Neubauer, Antonia, et al.
Publicado: (2022) -
Denoising diffusion-based MRI to CT image translation enables automated spinal segmentation
por: Graf, Robert, et al.
Publicado: (2023)