Cargando…

Effect of acute noise trauma on the gene expression profile of the hippocampus

BACKGROUND: This study aimed to investigate the changes in the expression of hippocampal genes upon acute noise exposure. METHODS: Three-week-old Sprague–Dawley rats were assigned to control (n = 15) and noise (n = 15) groups. White noise (2–20 kHz, 115 dB sound pressure level [SPL]) was delivered f...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Chang Ho, Kim, Kyung Woon, Lee, So Min, Kim, So Young
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7648995/
https://www.ncbi.nlm.nih.gov/pubmed/33160313
http://dx.doi.org/10.1186/s12868-020-00599-9
Descripción
Sumario:BACKGROUND: This study aimed to investigate the changes in the expression of hippocampal genes upon acute noise exposure. METHODS: Three-week-old Sprague–Dawley rats were assigned to control (n = 15) and noise (n = 15) groups. White noise (2–20 kHz, 115 dB sound pressure level [SPL]) was delivered for 4 h per day for 3 days to the noise group. All rats were sacrificed on the last day of noise exposure, and gene expression in the hippocampus was analyzed using a microarray. Pathway analyses were conducted for genes that showed differential expression ≥ 1.5-fold and P ≤ 0.05 compared to the control group. The genes included in the putative pathways were measured using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). RESULTS: Thirty-eight upregulated genes and 81 downregulated genes were identified. The pathway analyses revealed that upregulated genes were involved in the cellular responses to external stimuli and immune system pathways. qRT-PCR confirmed the upregulation of the involved genes. The downregulated genes were involved in neuronal systems and synapse-related pathways, and qRT-PCR confirmed the downregulation of the involved genes. CONCLUSIONS: Acute noise exposure upregulated the expression of immune-related genes and downregulated the expression of neurotransmission-related genes in the hippocampus.