Cargando…
Molecular docking analysis of α2-containing GABAA receptors with benzimidazoles derivatives
It is of interest to study the binding capacity of "3-[2-(2-Amino-1H-benzo[d]imidazol-1-yl)ethyl]-1,3-oxazolidin-2-one" (OXB2) with the active site of gamma-aminobutyric acid (GABA) located in the GABA type A receptor (GABAAR) in comparison with different GABAA subtypes. Optimal binding fe...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Biomedical Informatics
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7649024/ https://www.ncbi.nlm.nih.gov/pubmed/33214749 http://dx.doi.org/10.6026/97320630016611 |
Sumario: | It is of interest to study the binding capacity of "3-[2-(2-Amino-1H-benzo[d]imidazol-1-yl)ethyl]-1,3-oxazolidin-2-one" (OXB2) with the active site of gamma-aminobutyric acid (GABA) located in the GABA type A receptor (GABAAR) in comparison with different GABAA subtypes. Optimal binding features were observed with the α2β2γ2 isoform (-8 kcal/mol). This is similar (-7.3 and -7.2 kcal/mol, respectively) for subtypes (α3β2γ2 and α1β2γ2). This implies that OXB2 binds preferentially to subtypes associated with anxiety (α2- and/or α3-containing receptors) linked molecules than with the subtype associated with sedation (α1-containing receptors). It is further noted that molecular dynamics simulation data of the complex (OXB2-GABAAR) shows adequate structural stability in aqueous environment. Moreover, relevant ADMET data is found adequate for further consideration. |
---|