Cargando…
An analysis of non-cultivable bacteria using WEKA
The study of metagenomics from high throughput sequencing data processed through Waikato Environment for Knowledge Analysis (WEKA) is gaining momentum in recent years. Therefore, we report an analysis of metagenome data generated using T-RFLP followed by using the SMO (Sequential minimal optimizatio...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Biomedical Informatics
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7649025/ https://www.ncbi.nlm.nih.gov/pubmed/33214750 http://dx.doi.org/10.6026/97320630016620 |
Sumario: | The study of metagenomics from high throughput sequencing data processed through Waikato Environment for Knowledge Analysis (WEKA) is gaining momentum in recent years. Therefore, we report an analysis of metagenome data generated using T-RFLP followed by using the SMO (Sequential minimal optimization) algorithm in WEKA to identify the total amount of cultured and uncultured microorganism present in the sample collected from multiple sources. |
---|