Cargando…
An analysis of non-cultivable bacteria using WEKA
The study of metagenomics from high throughput sequencing data processed through Waikato Environment for Knowledge Analysis (WEKA) is gaining momentum in recent years. Therefore, we report an analysis of metagenome data generated using T-RFLP followed by using the SMO (Sequential minimal optimizatio...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Biomedical Informatics
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7649025/ https://www.ncbi.nlm.nih.gov/pubmed/33214750 http://dx.doi.org/10.6026/97320630016620 |
_version_ | 1783607235181543424 |
---|---|
author | Patil, Pritee Chunarkar Panchal, Pradnya Suresh Madiwale, Shweta Tale, Vidya Sunil |
author_facet | Patil, Pritee Chunarkar Panchal, Pradnya Suresh Madiwale, Shweta Tale, Vidya Sunil |
author_sort | Patil, Pritee Chunarkar |
collection | PubMed |
description | The study of metagenomics from high throughput sequencing data processed through Waikato Environment for Knowledge Analysis (WEKA) is gaining momentum in recent years. Therefore, we report an analysis of metagenome data generated using T-RFLP followed by using the SMO (Sequential minimal optimization) algorithm in WEKA to identify the total amount of cultured and uncultured microorganism present in the sample collected from multiple sources. |
format | Online Article Text |
id | pubmed-7649025 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Biomedical Informatics |
record_format | MEDLINE/PubMed |
spelling | pubmed-76490252020-11-18 An analysis of non-cultivable bacteria using WEKA Patil, Pritee Chunarkar Panchal, Pradnya Suresh Madiwale, Shweta Tale, Vidya Sunil Bioinformation Research Article The study of metagenomics from high throughput sequencing data processed through Waikato Environment for Knowledge Analysis (WEKA) is gaining momentum in recent years. Therefore, we report an analysis of metagenome data generated using T-RFLP followed by using the SMO (Sequential minimal optimization) algorithm in WEKA to identify the total amount of cultured and uncultured microorganism present in the sample collected from multiple sources. Biomedical Informatics 2020-08-31 /pmc/articles/PMC7649025/ /pubmed/33214750 http://dx.doi.org/10.6026/97320630016620 Text en © 2020 Biomedical Informatics http://creativecommons.org/licenses/by/3.0/ This is an Open Access article which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. This is distributed under the terms of the Creative Commons Attribution License. |
spellingShingle | Research Article Patil, Pritee Chunarkar Panchal, Pradnya Suresh Madiwale, Shweta Tale, Vidya Sunil An analysis of non-cultivable bacteria using WEKA |
title | An analysis of non-cultivable bacteria using WEKA |
title_full | An analysis of non-cultivable bacteria using WEKA |
title_fullStr | An analysis of non-cultivable bacteria using WEKA |
title_full_unstemmed | An analysis of non-cultivable bacteria using WEKA |
title_short | An analysis of non-cultivable bacteria using WEKA |
title_sort | analysis of non-cultivable bacteria using weka |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7649025/ https://www.ncbi.nlm.nih.gov/pubmed/33214750 http://dx.doi.org/10.6026/97320630016620 |
work_keys_str_mv | AT patilpriteechunarkar ananalysisofnoncultivablebacteriausingweka AT panchalpradnyasuresh ananalysisofnoncultivablebacteriausingweka AT madiwaleshweta ananalysisofnoncultivablebacteriausingweka AT talevidyasunil ananalysisofnoncultivablebacteriausingweka AT patilpriteechunarkar analysisofnoncultivablebacteriausingweka AT panchalpradnyasuresh analysisofnoncultivablebacteriausingweka AT madiwaleshweta analysisofnoncultivablebacteriausingweka AT talevidyasunil analysisofnoncultivablebacteriausingweka |