Cargando…
Nuclear Segmentation in Histopathological Images Using Two-Stage Stacked U-Nets With Attention Mechanism
Nuclei segmentation is a fundamental but challenging task in histopathological image analysis. One of the main problems is the existence of overlapping regions which increases the difficulty of independent nuclei separation. In this study, to solve the segmentation of nuclei and overlapping regions,...
Autores principales: | Kong, Yan, Genchev, Georgi Z., Wang, Xiaolei, Zhao, Hongyu, Lu, Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7649338/ https://www.ncbi.nlm.nih.gov/pubmed/33195135 http://dx.doi.org/10.3389/fbioe.2020.573866 |
Ejemplares similares
-
SCAU-Net: Spatial-Channel Attention U-Net for Gland Segmentation
por: Zhao, Peng, et al.
Publicado: (2020) -
Automated segmentation of vertebral cortex with 3D U-Net-based deep convolutional neural network
por: Li, Yang, et al.
Publicado: (2022) -
PAC-Net: Multi-pathway FPN with position attention guided connections and vertex distance IoU for 3D medical image detection
por: Xu, Zhenghua, et al.
Publicado: (2023) -
Glandular Segmentation of Prostate Cancer: An Illustration of How the Choice of Histopathological Stain Is One Key to Success for Computational Pathology
por: Avenel, Christophe, et al.
Publicado: (2019) -
N-Net: Lesion region segmentations using the generalized hybrid dilated convolutions for polyps in colonoscopy images
por: Cui, Rongsheng, et al.
Publicado: (2022)