Cargando…
Development and validation of metabolism-related gene signature in prognostic prediction of gastric cancer
Gastric cancer is one of the most common malignant tumours in the world. As one of the crucial hallmarks of cancer reprogramming of metabolism and the relevant researches have a promising application in the diagnosis treatment and prognostic prediction of malignant tumours. This study aims to identi...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7649605/ https://www.ncbi.nlm.nih.gov/pubmed/33209209 http://dx.doi.org/10.1016/j.csbj.2020.09.037 |
_version_ | 1783607358195236864 |
---|---|
author | Luo, Tianqi Li, Yuanfang Nie, Runcong Liang, Chengcai Liu, Zekun Xue, Zhicheng Chen, Guoming Jiang, Kaiming Liu, Ze-Xian Lin, Huan Li, Cong Chen, Yingbo |
author_facet | Luo, Tianqi Li, Yuanfang Nie, Runcong Liang, Chengcai Liu, Zekun Xue, Zhicheng Chen, Guoming Jiang, Kaiming Liu, Ze-Xian Lin, Huan Li, Cong Chen, Yingbo |
author_sort | Luo, Tianqi |
collection | PubMed |
description | Gastric cancer is one of the most common malignant tumours in the world. As one of the crucial hallmarks of cancer reprogramming of metabolism and the relevant researches have a promising application in the diagnosis treatment and prognostic prediction of malignant tumours. This study aims to identify a group of metabolism-related genes to construct a prediction model for the prognosis of gastric cancer. A large cohort of gastric cancer cases (1121 cases) from public database was included in our analysis and classified patients into training and testing cohorts at a ratio of 7: 3. After identifying a list of metabolism-related genes having prognostic value, we constructed a risk score based on metabolism-related genes using LASSO-COX method. According to the risk score, patients were divided into high- and low-risk groups. Our results revealed that high-risk patients had a significantly worse prognosis than low-risk patients in both the training (high-risk vs low-risk patients; five years overall survival: 37.2% vs 72.2%; p < 0.001) and testing cohorts (high-risk vs low-risk patients; five years overall survival: 42.9% vs 62.9%; p < 0.001). This observation was validated in the external validation cohort (high-risk vs. low-risk patients; five years overall survival: 30.2% vs 40.4%; p = 0.007). To reinforce the predictive ability of the model, we integrated risk score, age, adjuvant chemotherapy, and TNM stage into a nomogram. According to the result of receiver operating characteristic curves and decision curves analysis, we found that the nomogram score had a superior predictive ability than conventional factors, indicating that the risk score combined with clinicopathological features can develop a robust prediction for survival and improve the individualized clinical decision making of the patient. In conclusion, we identified a list of metabolic genes related to survival and developed a metabolism-based predictive model for gastric cancer. Through a series of bioinformatics and statistical analyses, the predictive ability of the model was confirmed. |
format | Online Article Text |
id | pubmed-7649605 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Research Network of Computational and Structural Biotechnology |
record_format | MEDLINE/PubMed |
spelling | pubmed-76496052020-11-17 Development and validation of metabolism-related gene signature in prognostic prediction of gastric cancer Luo, Tianqi Li, Yuanfang Nie, Runcong Liang, Chengcai Liu, Zekun Xue, Zhicheng Chen, Guoming Jiang, Kaiming Liu, Ze-Xian Lin, Huan Li, Cong Chen, Yingbo Comput Struct Biotechnol J Research Article Gastric cancer is one of the most common malignant tumours in the world. As one of the crucial hallmarks of cancer reprogramming of metabolism and the relevant researches have a promising application in the diagnosis treatment and prognostic prediction of malignant tumours. This study aims to identify a group of metabolism-related genes to construct a prediction model for the prognosis of gastric cancer. A large cohort of gastric cancer cases (1121 cases) from public database was included in our analysis and classified patients into training and testing cohorts at a ratio of 7: 3. After identifying a list of metabolism-related genes having prognostic value, we constructed a risk score based on metabolism-related genes using LASSO-COX method. According to the risk score, patients were divided into high- and low-risk groups. Our results revealed that high-risk patients had a significantly worse prognosis than low-risk patients in both the training (high-risk vs low-risk patients; five years overall survival: 37.2% vs 72.2%; p < 0.001) and testing cohorts (high-risk vs low-risk patients; five years overall survival: 42.9% vs 62.9%; p < 0.001). This observation was validated in the external validation cohort (high-risk vs. low-risk patients; five years overall survival: 30.2% vs 40.4%; p = 0.007). To reinforce the predictive ability of the model, we integrated risk score, age, adjuvant chemotherapy, and TNM stage into a nomogram. According to the result of receiver operating characteristic curves and decision curves analysis, we found that the nomogram score had a superior predictive ability than conventional factors, indicating that the risk score combined with clinicopathological features can develop a robust prediction for survival and improve the individualized clinical decision making of the patient. In conclusion, we identified a list of metabolic genes related to survival and developed a metabolism-based predictive model for gastric cancer. Through a series of bioinformatics and statistical analyses, the predictive ability of the model was confirmed. Research Network of Computational and Structural Biotechnology 2020-10-17 /pmc/articles/PMC7649605/ /pubmed/33209209 http://dx.doi.org/10.1016/j.csbj.2020.09.037 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Luo, Tianqi Li, Yuanfang Nie, Runcong Liang, Chengcai Liu, Zekun Xue, Zhicheng Chen, Guoming Jiang, Kaiming Liu, Ze-Xian Lin, Huan Li, Cong Chen, Yingbo Development and validation of metabolism-related gene signature in prognostic prediction of gastric cancer |
title | Development and validation of metabolism-related gene signature in prognostic prediction of gastric cancer |
title_full | Development and validation of metabolism-related gene signature in prognostic prediction of gastric cancer |
title_fullStr | Development and validation of metabolism-related gene signature in prognostic prediction of gastric cancer |
title_full_unstemmed | Development and validation of metabolism-related gene signature in prognostic prediction of gastric cancer |
title_short | Development and validation of metabolism-related gene signature in prognostic prediction of gastric cancer |
title_sort | development and validation of metabolism-related gene signature in prognostic prediction of gastric cancer |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7649605/ https://www.ncbi.nlm.nih.gov/pubmed/33209209 http://dx.doi.org/10.1016/j.csbj.2020.09.037 |
work_keys_str_mv | AT luotianqi developmentandvalidationofmetabolismrelatedgenesignatureinprognosticpredictionofgastriccancer AT liyuanfang developmentandvalidationofmetabolismrelatedgenesignatureinprognosticpredictionofgastriccancer AT nieruncong developmentandvalidationofmetabolismrelatedgenesignatureinprognosticpredictionofgastriccancer AT liangchengcai developmentandvalidationofmetabolismrelatedgenesignatureinprognosticpredictionofgastriccancer AT liuzekun developmentandvalidationofmetabolismrelatedgenesignatureinprognosticpredictionofgastriccancer AT xuezhicheng developmentandvalidationofmetabolismrelatedgenesignatureinprognosticpredictionofgastriccancer AT chenguoming developmentandvalidationofmetabolismrelatedgenesignatureinprognosticpredictionofgastriccancer AT jiangkaiming developmentandvalidationofmetabolismrelatedgenesignatureinprognosticpredictionofgastriccancer AT liuzexian developmentandvalidationofmetabolismrelatedgenesignatureinprognosticpredictionofgastriccancer AT linhuan developmentandvalidationofmetabolismrelatedgenesignatureinprognosticpredictionofgastriccancer AT licong developmentandvalidationofmetabolismrelatedgenesignatureinprognosticpredictionofgastriccancer AT chenyingbo developmentandvalidationofmetabolismrelatedgenesignatureinprognosticpredictionofgastriccancer |