Cargando…

KG-COVID-19: A Framework to Produce Customized Knowledge Graphs for COVID-19 Response

Integrated, up-to-date data about SARS-CoV-2 and COVID-19 is crucial for the ongoing response to the COVID-19 pandemic by the biomedical research community. While rich biological knowledge exists for SARS-CoV-2 and related viruses (SARS-CoV, MERS-CoV), integrating this knowledge is difficult and tim...

Descripción completa

Detalles Bibliográficos
Autores principales: Reese, Justin T., Unni, Deepak, Callahan, Tiffany J., Cappelletti, Luca, Ravanmehr, Vida, Carbon, Seth, Shefchek, Kent A., Good, Benjamin M., Balhoff, James P., Fontana, Tommaso, Blau, Hannah, Matentzoglu, Nicolas, Harris, Nomi L., Munoz-Torres, Monica C., Haendel, Melissa A., Robinson, Peter N., Joachimiak, Marcin P., Mungall, Christopher J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7649624/
https://www.ncbi.nlm.nih.gov/pubmed/33196056
http://dx.doi.org/10.1016/j.patter.2020.100155
_version_ 1783607362307751936
author Reese, Justin T.
Unni, Deepak
Callahan, Tiffany J.
Cappelletti, Luca
Ravanmehr, Vida
Carbon, Seth
Shefchek, Kent A.
Good, Benjamin M.
Balhoff, James P.
Fontana, Tommaso
Blau, Hannah
Matentzoglu, Nicolas
Harris, Nomi L.
Munoz-Torres, Monica C.
Haendel, Melissa A.
Robinson, Peter N.
Joachimiak, Marcin P.
Mungall, Christopher J.
author_facet Reese, Justin T.
Unni, Deepak
Callahan, Tiffany J.
Cappelletti, Luca
Ravanmehr, Vida
Carbon, Seth
Shefchek, Kent A.
Good, Benjamin M.
Balhoff, James P.
Fontana, Tommaso
Blau, Hannah
Matentzoglu, Nicolas
Harris, Nomi L.
Munoz-Torres, Monica C.
Haendel, Melissa A.
Robinson, Peter N.
Joachimiak, Marcin P.
Mungall, Christopher J.
author_sort Reese, Justin T.
collection PubMed
description Integrated, up-to-date data about SARS-CoV-2 and COVID-19 is crucial for the ongoing response to the COVID-19 pandemic by the biomedical research community. While rich biological knowledge exists for SARS-CoV-2 and related viruses (SARS-CoV, MERS-CoV), integrating this knowledge is difficult and time-consuming, since much of it is in siloed databases or in textual format. Furthermore, the data required by the research community vary drastically for different tasks; the optimal data for a machine learning task, for example, is much different from the data used to populate a browsable user interface for clinicians. To address these challenges, we created KG-COVID-19, a flexible framework that ingests and integrates heterogeneous biomedical data to produce knowledge graphs (KGs), and applied it to create a KG for COVID-19 response. This KG framework also can be applied to other problems in which siloed biomedical data must be quickly integrated for different research applications, including future pandemics.
format Online
Article
Text
id pubmed-7649624
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-76496242020-11-09 KG-COVID-19: A Framework to Produce Customized Knowledge Graphs for COVID-19 Response Reese, Justin T. Unni, Deepak Callahan, Tiffany J. Cappelletti, Luca Ravanmehr, Vida Carbon, Seth Shefchek, Kent A. Good, Benjamin M. Balhoff, James P. Fontana, Tommaso Blau, Hannah Matentzoglu, Nicolas Harris, Nomi L. Munoz-Torres, Monica C. Haendel, Melissa A. Robinson, Peter N. Joachimiak, Marcin P. Mungall, Christopher J. Patterns (N Y) Article Integrated, up-to-date data about SARS-CoV-2 and COVID-19 is crucial for the ongoing response to the COVID-19 pandemic by the biomedical research community. While rich biological knowledge exists for SARS-CoV-2 and related viruses (SARS-CoV, MERS-CoV), integrating this knowledge is difficult and time-consuming, since much of it is in siloed databases or in textual format. Furthermore, the data required by the research community vary drastically for different tasks; the optimal data for a machine learning task, for example, is much different from the data used to populate a browsable user interface for clinicians. To address these challenges, we created KG-COVID-19, a flexible framework that ingests and integrates heterogeneous biomedical data to produce knowledge graphs (KGs), and applied it to create a KG for COVID-19 response. This KG framework also can be applied to other problems in which siloed biomedical data must be quickly integrated for different research applications, including future pandemics. Elsevier 2020-11-09 /pmc/articles/PMC7649624/ /pubmed/33196056 http://dx.doi.org/10.1016/j.patter.2020.100155 Text en © 2020 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Reese, Justin T.
Unni, Deepak
Callahan, Tiffany J.
Cappelletti, Luca
Ravanmehr, Vida
Carbon, Seth
Shefchek, Kent A.
Good, Benjamin M.
Balhoff, James P.
Fontana, Tommaso
Blau, Hannah
Matentzoglu, Nicolas
Harris, Nomi L.
Munoz-Torres, Monica C.
Haendel, Melissa A.
Robinson, Peter N.
Joachimiak, Marcin P.
Mungall, Christopher J.
KG-COVID-19: A Framework to Produce Customized Knowledge Graphs for COVID-19 Response
title KG-COVID-19: A Framework to Produce Customized Knowledge Graphs for COVID-19 Response
title_full KG-COVID-19: A Framework to Produce Customized Knowledge Graphs for COVID-19 Response
title_fullStr KG-COVID-19: A Framework to Produce Customized Knowledge Graphs for COVID-19 Response
title_full_unstemmed KG-COVID-19: A Framework to Produce Customized Knowledge Graphs for COVID-19 Response
title_short KG-COVID-19: A Framework to Produce Customized Knowledge Graphs for COVID-19 Response
title_sort kg-covid-19: a framework to produce customized knowledge graphs for covid-19 response
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7649624/
https://www.ncbi.nlm.nih.gov/pubmed/33196056
http://dx.doi.org/10.1016/j.patter.2020.100155
work_keys_str_mv AT reesejustint kgcovid19aframeworktoproducecustomizedknowledgegraphsforcovid19response
AT unnideepak kgcovid19aframeworktoproducecustomizedknowledgegraphsforcovid19response
AT callahantiffanyj kgcovid19aframeworktoproducecustomizedknowledgegraphsforcovid19response
AT cappellettiluca kgcovid19aframeworktoproducecustomizedknowledgegraphsforcovid19response
AT ravanmehrvida kgcovid19aframeworktoproducecustomizedknowledgegraphsforcovid19response
AT carbonseth kgcovid19aframeworktoproducecustomizedknowledgegraphsforcovid19response
AT shefchekkenta kgcovid19aframeworktoproducecustomizedknowledgegraphsforcovid19response
AT goodbenjaminm kgcovid19aframeworktoproducecustomizedknowledgegraphsforcovid19response
AT balhoffjamesp kgcovid19aframeworktoproducecustomizedknowledgegraphsforcovid19response
AT fontanatommaso kgcovid19aframeworktoproducecustomizedknowledgegraphsforcovid19response
AT blauhannah kgcovid19aframeworktoproducecustomizedknowledgegraphsforcovid19response
AT matentzoglunicolas kgcovid19aframeworktoproducecustomizedknowledgegraphsforcovid19response
AT harrisnomil kgcovid19aframeworktoproducecustomizedknowledgegraphsforcovid19response
AT munoztorresmonicac kgcovid19aframeworktoproducecustomizedknowledgegraphsforcovid19response
AT haendelmelissaa kgcovid19aframeworktoproducecustomizedknowledgegraphsforcovid19response
AT robinsonpetern kgcovid19aframeworktoproducecustomizedknowledgegraphsforcovid19response
AT joachimiakmarcinp kgcovid19aframeworktoproducecustomizedknowledgegraphsforcovid19response
AT mungallchristopherj kgcovid19aframeworktoproducecustomizedknowledgegraphsforcovid19response