Cargando…

Cortical brain activity in transfemoral or knee-disarticulation prosthesis users performing single- and dual-task walking activities

INTRODUCTION: Walking with a prosthesis while performing secondary tasks increases demand on cognitive resources, compromising balance and gait. This study investigated effects of a secondary task on patterns of brain activity and temporospatial gait parameters in individuals using a prosthesis with...

Descripción completa

Detalles Bibliográficos
Autores principales: Möller, Saffran, Ramstrand, Nerrolyn, Hagberg, Kerstin, Rusaw, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7649851/
https://www.ncbi.nlm.nih.gov/pubmed/33224519
http://dx.doi.org/10.1177/2055668320964109
Descripción
Sumario:INTRODUCTION: Walking with a prosthesis while performing secondary tasks increases demand on cognitive resources, compromising balance and gait. This study investigated effects of a secondary task on patterns of brain activity and temporospatial gait parameters in individuals using a prosthesis with or without a microprocessor-controlled prosthetic knee(MPK) and controls. METHODS: A cross-sectional study with repeated measures was performed. Twenty-nine individuals with amputations and 16 controls were recruited. Functional near-infrared spectroscopy was used to evaluate changes in oxygenated and de-oxygenated haemoglobin in the prefrontal cortex and temporospatial variables during single-and dual-task walking. RESULTS: Differences in brain activity were observed within the MPK-group and controls without changes in temporospatial parameters. The Trail-Walking test was associated with highest levels of brain activity in both groups. No differences were observed between single- and dual-task walking in the non-MPK-group (p > 0.05). The Non-MPK and the MPK-group recorded higher levels of brain activity than controls during single-task walking and poorer results on temporospatial variables compared to controls. CONCLUSIONS: For the MPK-group and controls, introduction of a secondary task led to an increase in brain activity. This was not seen in the Non-MPK-group. Significant differences in brain activity were observed in the absence of changes in temporospatial parameters.