Cargando…
Conditioned pain modulation in drug-naïve patients with de novo Parkinson’s disease
BACKGROUND: Pain is highly prevalent in patients with Parkinson’s disease (PD), but underlying pathophysiological mechanisms are largely unclear. In many chronic pain syndromes deficits in endogenous pain inhibition have been detected that can be assessed using conditioned pain modulation paradigms....
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7650066/ https://www.ncbi.nlm.nih.gov/pubmed/33324893 http://dx.doi.org/10.1186/s42466-019-0029-x |
Sumario: | BACKGROUND: Pain is highly prevalent in patients with Parkinson’s disease (PD), but underlying pathophysiological mechanisms are largely unclear. In many chronic pain syndromes deficits in endogenous pain inhibition have been detected that can be assessed using conditioned pain modulation paradigms. Previous studies employing this approach in medicated PD patients did not find abnormal pain inhibition. However, these results might have been confounded by residual dopaminergic medication. METHODS: An established conditioned pain modulation paradigm was used in 17 drug-naïve de novo PD patients and 17 healthy age and gender-matched controls. We tested i) whether conditioned pain modulation responses differed between the patient and control group and ii) whether pain inhibition differed between PD subtypes. RESULTS: PD patients and healthy controls did not differ in their conditioned pain modulation responses. Furthermore, there were no significant differences in CPM responses depending on the PD subtype. However, at a descriptive level, tremor-dominant patients showed a tendency for better descending pain inhibition compared to akinetic-rigid and mixed type patients. CONCLUSIONS: In this first study investigating conditioned pain modulation in de novo PD patients, we found no additional impairment in descending pain modulation besides the known age-related decline. Our findings indicate that mechanisms other than an impaired descending inhibition contribute to high pain prevalence rates in PD and suggest that mechanisms underlying pain may differ between PD subtypes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s42466-019-0029-x) contains supplementary material, which is available to authorized users. |
---|