Cargando…

Recovery from stroke: current concepts and future perspectives

Stroke is a leading cause of acquired, permanent disability worldwide. Although the treatment of acute stroke has been improved considerably, the majority of patients to date are left disabled with a considerable impact on functional independence and quality of life. As the absolute number of stroke...

Descripción completa

Detalles Bibliográficos
Autores principales: Grefkes, Christian, Fink, Gereon R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7650109/
https://www.ncbi.nlm.nih.gov/pubmed/33324923
http://dx.doi.org/10.1186/s42466-020-00060-6
Descripción
Sumario:Stroke is a leading cause of acquired, permanent disability worldwide. Although the treatment of acute stroke has been improved considerably, the majority of patients to date are left disabled with a considerable impact on functional independence and quality of life. As the absolute number of stroke survivors is likely to further increase due to the demographic changes in our aging societies, new strategies are needed in order to improve neurorehabilitation. The most critical driver of functional recovery post-stroke is neural reorganization. For developing novel, neurobiologically informed strategies to promote recovery of function, an improved understanding of the mechanisms enabling plasticity and recovery is mandatory. This review provides a comprehensive survey of recent developments in the field of stroke recovery using neuroimaging and non-invasive brain stimulation. We discuss current concepts of how the brain reorganizes its functional architecture to overcome stroke-induced deficits, and also present evidence for maladaptive effects interfering with recovery. We demonstrate that the combination of neuroimaging and neurostimulation techniques allows a better understanding of how brain plasticity can be modulated to promote the reorganization of neural networks. Finally, neurotechnology-based treatment strategies allowing patient-tailored interventions to achieve enhanced treatment responses are discussed. The review also highlights important limitations of current models, and finally closes with possible solutions and future directions.