Cargando…

Acute coronary syndrome with large thrombus successfully managed with no-stenting revascularization based on intravascular imaging in a patient with hyperhomocysteinemia: a case report

BACKGROUND: Hyperhomocysteinemia is caused by genetic and environmental factors, which can result in systemic arteriosclerosis and arteriovenous thrombosis including acute coronary syndrome. Thrombus burden in patients with acute coronary syndrome and hyperhomocysteinemia might involve the culprit l...

Descripción completa

Detalles Bibliográficos
Autores principales: Shoji, Keisuke, Yanishi, Kenji, Wakana, Noriyuki, Nakanishi, Naohiko, Zen, Kan, Nakamura, Takeshi, Shirayama, Takeshi, Matoba, Satoaki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7650176/
https://www.ncbi.nlm.nih.gov/pubmed/33161897
http://dx.doi.org/10.1186/s13256-020-02531-5
Descripción
Sumario:BACKGROUND: Hyperhomocysteinemia is caused by genetic and environmental factors, which can result in systemic arteriosclerosis and arteriovenous thrombosis including acute coronary syndrome. Thrombus burden in patients with acute coronary syndrome and hyperhomocysteinemia might involve the culprit lesion as compared with those without any coagulopathy. The primary percutaneous coronary intervention with stent implantation had been established as the treatment strategy for patients with acute coronary syndrome. However, in patients with acute coronary syndrome with high thrombus burden or uncontrolled coagulopathy, stent implantation might lead to slow-flow phenomenon or stent thrombosis. Therefore, the treatment strategy in these patients was not established. CASE PRESENTATION: A 49-year-old Japanese man with history of splenic infarction of unknown cause had continued anticoagulant therapy since its diagnosis, but stopped taking the medication several months ago. He presented with sudden-onset chest dorsalgia. Contrast computed tomography showed a small pulmonary embolism and his troponin I level was elevated on initial laboratory test. Coronary angiography revealed a contrast defect caused by a large thrombus from the proximal to mid portion of the left anterior descending artery. Near-infrared spectroscopy–intravascular ultrasonography showed a large amount of thrombus without lipid plaque. Therefore, revascularization was performed using a thrombus-aspiration catheter and intracoronary thrombolysis. In addition, , hyperhomocysteinemia and a deep vein thrombosis occurred. He was diagnosed with acute coronary syndrome complicated with pulmonary embolism and deep vein thrombosis simultaneously induced by hyperhomocysteinemia. After 1 week of antithrombotic therapy, near-infrared spectroscopy–intravascular ultrasonography and optical coherence tomography revealed a decreased thrombus and no significant residual organic stenosis in the left anterior descending artery. He continued conservative therapy with antithrombotic medications including aspirin and warfarin and had no cardiovascular events after discharge. Follow-up coronary angiography and optical coherence tomography at 9 months revealed complete disappearance of the thrombus and no severe stenosis. CONCLUSIONS: Hyperhomocysteinemia should be considered as a cause of arterial vein thrombosis of unknown cause. The antithrombotic therapy and percutaneous revascularization without stenting based on intravascular imaging might be a safe and effective treatment option in patients with acute coronary syndrome complicated with hyperhomocysteinemia.