Cargando…
SVFX: a machine learning framework to quantify the pathogenicity of structural variants
There is a lack of approaches for identifying pathogenic genomic structural variants (SVs) although they play a crucial role in many diseases. We present a mechanism-agnostic machine learning-based workflow, called SVFX, to assign pathogenicity scores to somatic and germline SVs. In particular, we g...
Autores principales: | Kumar, Sushant, Harmanci, Arif, Vytheeswaran, Jagath, Gerstein, Mark B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7650198/ https://www.ncbi.nlm.nih.gov/pubmed/33168059 http://dx.doi.org/10.1186/s13059-020-02178-x |
Ejemplares similares
-
MUSIC: identification of enriched regions in ChIP-Seq experiments using a mappability-corrected multiscale signal processing framework
por: Harmanci, Arif, et al.
Publicado: (2014) -
FunSeq2: a framework for prioritizing noncoding regulatory variants in cancer
por: Fu, Yao, et al.
Publicado: (2014) -
Phylodynamics with Migration: A Computational Framework to Quantify Population Structure from Genomic Data
por: Kühnert, Denise, et al.
Publicado: (2016) -
LUMPY: a probabilistic framework for structural variant discovery
por: Layer, Ryan M, et al.
Publicado: (2014) -
Localized structural frustration for evaluating the impact of sequence variants
por: Kumar, Sushant, et al.
Publicado: (2016)