Cargando…
Exploring the use of leucine zippers for the generation of a new class of inclusion bodies for pharma and biotechnological applications
BACKGROUND: Inclusion bodies (IBs) are biologically active protein aggregates forming natural nanoparticles with a high stability and a slow-release behavior. Because of their nature, IBs have been explored to be used as biocatalysts, in tissue engineering, and also for human and animal therapies. T...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7650227/ https://www.ncbi.nlm.nih.gov/pubmed/32887587 http://dx.doi.org/10.1186/s12934-020-01425-x |
_version_ | 1783607473898258432 |
---|---|
author | Roca-Pinilla, Ramon Fortuna, Sara Natalello, Antonino Sánchez-Chardi, Alejandro Ami, Diletta Arís, Anna Garcia-Fruitós, Elena |
author_facet | Roca-Pinilla, Ramon Fortuna, Sara Natalello, Antonino Sánchez-Chardi, Alejandro Ami, Diletta Arís, Anna Garcia-Fruitós, Elena |
author_sort | Roca-Pinilla, Ramon |
collection | PubMed |
description | BACKGROUND: Inclusion bodies (IBs) are biologically active protein aggregates forming natural nanoparticles with a high stability and a slow-release behavior. Because of their nature, IBs have been explored to be used as biocatalysts, in tissue engineering, and also for human and animal therapies. To improve the production and biological efficiency of this nanomaterial, a wide range of aggregation tags have been evaluated. However, so far, the presence in the IBs of bacterial impurities such as lipids and other proteins coexisting with the recombinant product has been poorly studied. These impurities could strongly limit the potential of IB applications, being necessary to control the composition of these bacterial nanoparticles. Thus, we have explored the use of leucine zippers as alternative tags to promote not only aggregation but also the generation of a new type of IB-like protein nanoparticles with improved physicochemical properties. RESULTS: Three different protein constructs, named GFP, J-GFP-F and J/F-GFP were engineered. J-GFP-F corresponded to a GFP flanked by two leucine zippers (Jun and Fos); J/F-GFP was formed coexpressing a GFP fused to Jun leucine zipper (J-GFP) and a GFP fused to a Fos leucine zipper (F-GFP); and, finally, GFP was used as a control without any tag. All of them were expressed in Escherichia coli and formed IBs, where the aggregation tendency was especially high for J/F-GFP. Moreover, those IBs formed by J-GFP-F and J/F-GFP constructs were smaller, rougher, and more amorphous than GFP ones, increasing surface/mass ratio and, therefore, surface for protein release. Although the lipid and carbohydrate content were not reduced with the addition of leucine zippers, interesting differences were observed in the protein specific activity and conformation with the addition of Jun and Fos. Moreover, J-GFP-F and J/F-GFP nanoparticles were purer than GFP IBs in terms of protein content. CONCLUSIONS: This study proved that the use of leucine zippers strategy allows the formation of IBs with an increased aggregation ratio and protein purity, as we observed with the J/F-GFP approach, and the formation of IBs with a higher specific activity, in the case of J-GFP-F IBs. Thus, overall, the use of leucine zippers seems to be a good system for the production of IBs with more promising characteristics useful for pharma or biotech applications. |
format | Online Article Text |
id | pubmed-7650227 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-76502272020-11-09 Exploring the use of leucine zippers for the generation of a new class of inclusion bodies for pharma and biotechnological applications Roca-Pinilla, Ramon Fortuna, Sara Natalello, Antonino Sánchez-Chardi, Alejandro Ami, Diletta Arís, Anna Garcia-Fruitós, Elena Microb Cell Fact Research BACKGROUND: Inclusion bodies (IBs) are biologically active protein aggregates forming natural nanoparticles with a high stability and a slow-release behavior. Because of their nature, IBs have been explored to be used as biocatalysts, in tissue engineering, and also for human and animal therapies. To improve the production and biological efficiency of this nanomaterial, a wide range of aggregation tags have been evaluated. However, so far, the presence in the IBs of bacterial impurities such as lipids and other proteins coexisting with the recombinant product has been poorly studied. These impurities could strongly limit the potential of IB applications, being necessary to control the composition of these bacterial nanoparticles. Thus, we have explored the use of leucine zippers as alternative tags to promote not only aggregation but also the generation of a new type of IB-like protein nanoparticles with improved physicochemical properties. RESULTS: Three different protein constructs, named GFP, J-GFP-F and J/F-GFP were engineered. J-GFP-F corresponded to a GFP flanked by two leucine zippers (Jun and Fos); J/F-GFP was formed coexpressing a GFP fused to Jun leucine zipper (J-GFP) and a GFP fused to a Fos leucine zipper (F-GFP); and, finally, GFP was used as a control without any tag. All of them were expressed in Escherichia coli and formed IBs, where the aggregation tendency was especially high for J/F-GFP. Moreover, those IBs formed by J-GFP-F and J/F-GFP constructs were smaller, rougher, and more amorphous than GFP ones, increasing surface/mass ratio and, therefore, surface for protein release. Although the lipid and carbohydrate content were not reduced with the addition of leucine zippers, interesting differences were observed in the protein specific activity and conformation with the addition of Jun and Fos. Moreover, J-GFP-F and J/F-GFP nanoparticles were purer than GFP IBs in terms of protein content. CONCLUSIONS: This study proved that the use of leucine zippers strategy allows the formation of IBs with an increased aggregation ratio and protein purity, as we observed with the J/F-GFP approach, and the formation of IBs with a higher specific activity, in the case of J-GFP-F IBs. Thus, overall, the use of leucine zippers seems to be a good system for the production of IBs with more promising characteristics useful for pharma or biotech applications. BioMed Central 2020-09-04 /pmc/articles/PMC7650227/ /pubmed/32887587 http://dx.doi.org/10.1186/s12934-020-01425-x Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Roca-Pinilla, Ramon Fortuna, Sara Natalello, Antonino Sánchez-Chardi, Alejandro Ami, Diletta Arís, Anna Garcia-Fruitós, Elena Exploring the use of leucine zippers for the generation of a new class of inclusion bodies for pharma and biotechnological applications |
title | Exploring the use of leucine zippers for the generation of a new class of inclusion bodies for pharma and biotechnological applications |
title_full | Exploring the use of leucine zippers for the generation of a new class of inclusion bodies for pharma and biotechnological applications |
title_fullStr | Exploring the use of leucine zippers for the generation of a new class of inclusion bodies for pharma and biotechnological applications |
title_full_unstemmed | Exploring the use of leucine zippers for the generation of a new class of inclusion bodies for pharma and biotechnological applications |
title_short | Exploring the use of leucine zippers for the generation of a new class of inclusion bodies for pharma and biotechnological applications |
title_sort | exploring the use of leucine zippers for the generation of a new class of inclusion bodies for pharma and biotechnological applications |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7650227/ https://www.ncbi.nlm.nih.gov/pubmed/32887587 http://dx.doi.org/10.1186/s12934-020-01425-x |
work_keys_str_mv | AT rocapinillaramon exploringtheuseofleucinezippersforthegenerationofanewclassofinclusionbodiesforpharmaandbiotechnologicalapplications AT fortunasara exploringtheuseofleucinezippersforthegenerationofanewclassofinclusionbodiesforpharmaandbiotechnologicalapplications AT natalelloantonino exploringtheuseofleucinezippersforthegenerationofanewclassofinclusionbodiesforpharmaandbiotechnologicalapplications AT sanchezchardialejandro exploringtheuseofleucinezippersforthegenerationofanewclassofinclusionbodiesforpharmaandbiotechnologicalapplications AT amidiletta exploringtheuseofleucinezippersforthegenerationofanewclassofinclusionbodiesforpharmaandbiotechnologicalapplications AT arisanna exploringtheuseofleucinezippersforthegenerationofanewclassofinclusionbodiesforpharmaandbiotechnologicalapplications AT garciafruitoselena exploringtheuseofleucinezippersforthegenerationofanewclassofinclusionbodiesforpharmaandbiotechnologicalapplications |