Cargando…

Metabolic Response of Faecalibacterium prausnitzii to Cell-Free Supernatants from Lactic Acid Bacteria

Interest in preventive or therapeutic strategies targeting gut microbiota is increasing. Such strategies may involve the direct replenishment of the gut microbiota with single strains or strain mixtures, or the manipulation of strain abundance through dietary intervention, including lactic acid bact...

Descripción completa

Detalles Bibliográficos
Autores principales: Lebas, Mathilde, Garault, Peggy, Carrillo, Daniel, Codoñer, Francisco M., Derrien, Muriel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7650636/
https://www.ncbi.nlm.nih.gov/pubmed/33027936
http://dx.doi.org/10.3390/microorganisms8101528
Descripción
Sumario:Interest in preventive or therapeutic strategies targeting gut microbiota is increasing. Such strategies may involve the direct replenishment of the gut microbiota with single strains or strain mixtures, or the manipulation of strain abundance through dietary intervention, including lactic acid bacteria. A few candidate species associated with health benefits have been identified, including Faecalibacterium prausnitzii. Given its growth requirements, modulation of this bacterium has not been extensively studied. In this investigation, we explored the capacity of cell-free supernatants of different Lactobacillus, Streptococcus, Lactococcus, and Bifidobacterium strains to stimulate the growth of F. prausnitzii A2-165. Modulation by four strains with the greatest capacity to stimulate growth or delay lysis, Lactococcus lactis subsp. lactis CNCM I-1631, Lactococcus lactis subsp. cremoris CNCM I-3558, Lactobacillus paracasei CNCM I-3689, and Streptococcus thermophilus CNCM I-3862, was further characterized by transcriptomics. The response of F. prausnitzii to cell-free supernatants from these four strains revealed several shared characteristics, in particular, upregulation of carbohydrate metabolism and cell wall-related genes and downregulation of replication and mobilome genes. Overall, this study suggests differential responses of F. prausnitzii to metabolites produced by different strains, providing protection against cell death, with an increase in peptidoglycan levels for cell wall formation, and reduced cell mobilome activity.