Cargando…

TMS-Induced Controlled BBB Opening: Preclinical Characterization and Implications for Treatment of Brain Cancer

Proper neuronal function requires strict maintenance of the brain’s extracellular environment. Therefore, passage of molecules between the circulation and brain neuropil is tightly regulated by the blood–brain barrier (BBB). While the BBB is vital for normal brain function, it also restricts the pas...

Descripción completa

Detalles Bibliográficos
Autores principales: Vazana, Udi, Schori, Lior, Monsonego, Uri, Swissa, Evyatar, Pell, Gabriel S., Roth, Yiftach, Brodt, Pnina, Friedman, Alon, Prager, Ofer
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7650663/
https://www.ncbi.nlm.nih.gov/pubmed/33027965
http://dx.doi.org/10.3390/pharmaceutics12100946
Descripción
Sumario:Proper neuronal function requires strict maintenance of the brain’s extracellular environment. Therefore, passage of molecules between the circulation and brain neuropil is tightly regulated by the blood–brain barrier (BBB). While the BBB is vital for normal brain function, it also restricts the passage of drugs, potentially effective in treating brain diseases, into the brain. Despite previous attempts, there is still an unmet need to develop novel approaches that will allow safe opening of the BBB for drug delivery. We have recently shown in experimental rodents and in a pilot human trial that low-frequency, high-amplitude repetitive transcranial magnetic stimulation (rTMS) allows the delivery of peripherally injected fluorescent and Gd-based tracers into the brain. The goals of this study were to characterize the duration and safety level of rTMS-induced BBB opening and test its capacity to enhance the delivery of the antitumor growth agent, insulin-like growth factor trap, across the BBB. We employed direct vascular and magnetic resonance imaging, as well as electrocorticography recordings, to assess the impact of rTMS on brain vascular permeability and electrical activity, respectively. Our findings indicate that rTMS induces a transient and safe BBB opening with a potential to facilitate drug delivery into the brain.